当前,自动驾驶、安防监控、空间碎片管理、“低慢小”目标识别等雷达新应用以及密集机群、高超音速武器、隐身武器等探测新需求对雷达系统的探测能力提出了越来越高的要求。充分利用带宽资源提升雷达探测能力成为重要趋势。微波光子学有望利用光子技术突破传统雷达的带宽瓶颈,已成为世界各国的研究热点[1-12]。然而,由于光子技术的频域“宽开”特性,宽带微波光子雷达易被外界电磁信号干扰,难以在复杂地理和电磁环境下对多样化目标进行高速探测与识别。同时,使用场景中往往已有大量的无线应用,难以为高分辨率探测提供连续的宽带空闲频谱。
一个可行的解决途径是认知雷达技术[13],通过感知雷达周边的电磁频谱环境来发现机会频谱,从而重构其发射波形,保障雷达能在复杂电磁环境下正常工作。实际上,世界各国都极为重视认知雷达的研究。美国DARPA在雷达信号的智能处理和系统资源的智能配置方面进行了系统化投入,典型的项目包括基于知识的雷达(KB-Radar)、知识辅助的传感器信号处理与专家推理(KASSPER)、知识辅助雷达(KA-Radar)、自治智能雷达系统(AIRS)、雷达与通信共享频谱(SSPARC)以及竞争环境下目标识别与适应(TRACE)等[14-22]。中国电科14所、中国电科38所、西安电子科技大学、成都电子科技大学、空军工程大学、国防科技大学、哈尔滨工业大学、清华大学、东南大学、天津大学、太原理工大学等单位对认知雷达的波形设计、目标识别追踪算法、MIMO认知雷达的阵源选择以及雷达通信网络频谱资源分配等内容展开了研究[23-39]。受限于电学雷达有限的带宽,这些工作的研究对象大都是相对窄带的雷达,认知的对象也较为多样,一类为对电磁环境的认知,包括频谱、波形以及信杂比等,另一类为对探测目标的认知,包括目标数量、运动状态以及散射截面等。此前,我们提出了宽带微波光子认知无线电技术,并以高分辨率成像雷达为应用对象进行了初步验证[40-41],但该雷达主要还是利用连续的宽带频谱进行成像。
本文将探讨一种不依赖于宽带连续频谱的高分辨率微波光子认知雷达技术。它基于微波光子学在宽带实时频谱侦测与可重构任意波形产生两方面的优势,融合多个机会频带实现高分辨率探测,可有效提升雷达的探测能力、生存能力和环境适应能力,有望为未来智能化装备提供清晰、可靠、智能的全天候探测手段。
图1为本文所提出的微波光子认知雷达的系统架构,主要由智能认知决策模块和微波光子认知探测平台两部分组成。微波光子认知探测平台又由微波光子观察机、执行机,以及可编程控制系统组成。各部分的功能如下:微波光子观察机基于实时频谱感知模块构建,主要对复杂电磁频谱环境进行高速感知;智能认知决策模块对输入的信息进行识别和判断,并结合先验知识,做出决策;可编程控制系统用于控制微波光子执行机和观察机;微波光子执行机,主要包括微波光子波形产生模块和微波光子信号处理模块,根据外部指令执行波形产生和回波处理等操作。需要指出的是,与图1架构相关的微波光子宽带实时频谱侦测、可重构波形产生、微波光子成像处理等技术已取得长足的进步,完全可以支撑认知微波光子雷达系统的构建。
图1 微波光子认知雷达的系统架构
系统的运行过程如下:微波光子观察机首先对雷达周边的频谱环境进行感知,将信息送至智能认知决策模块进行识别和判断;智能认知决策模块结合频谱时空分布统计数据、动态目标散射特性等先验知识,找出可用的机会频谱,做出采用哪些稀疏频带进行探测的决策;该决策反馈给微波光子认知探测平台,其中可编程控制系统根据决策控制微波光子执行机和观察机进行操作,微波光子波形产生模块根据控制命令产生满足频谱分布要求的宽带雷达波形,辐射到自由空间,而微波光子信号处理模块根据发射波形对回波信号进行实时处理,融合多个机会频带的信息实现高分辨率目标探测或成像。基于上述过程循环反复,使微波光子观察机、智能认知决策模块、可编程控制系统和微波光子执行机形成一个全闭环的自适应运行系统,实现自判断和自适应的抗干扰探测。
上述微波光子认知雷达系统充分发挥了光子技术的宽带承载、实时处理以及灵活可重构的优势,有望解决目前认知雷达硬件平台的宽带自适应波形产生、实时宽带频谱感知以及实时处理等关键难题,让雷达系统拥有实现宽带认知的软硬件支撑平台。
近年来,微波光子频谱感知技术得到了广泛的研究,典型的方法包括光子辅助的扫频接收机[42-53]、微波光子信道化接收机[54-78]和光子傅里叶变换接收机[79-87]等。
光扫频接收机与电学扫频接收机的工作原理类似,是一种有效的频谱感知技术。它可通过扫描光本振的频率[42-46],光载射频信号的频率[47-50],或微波光子滤波器的频率响应[51-53]来实现。相比其他微波光子频谱感知技术,光扫频接收方法有效减少了所需的硬件资源,拓展了工作带宽,但其扫描接收的方式会导致较长的响应时间。
信道化的基本功能是将接收到的宽带信号切割成多个并行的窄带信号,从而可使用低速模数转换器(ADC)和数字信号处理器(DSP)进行处理[88]。微波光子信道化方案可以分为三大类。一类是将射频信号调制在一个光载波上,通过一组光滤波器划分为多路[54-56];第二类是将射频信号调制到一个光频梳(一组频率间隔相同的光载波)上,然后利用一个自由频谱范围与梳齿间隔略有偏差的梳状光滤波器对射频信号中的不同频率分量进行选取和分离[57-67]。这两类方法对光滤波器的顶部平坦度、带宽、中心频率的精确性和边缘陡峭性提出了极高的要求,使得信道间串扰、信道带宽和信道一致性等难以提升。
第三种方法是基于一对相干光频梳实现,首先将射频信号调制到一个光频梳(称为信号梳)上,亦即将信号复制到光域不同的波长上,然后与另一组梳齿间隔有略微差异的光频梳(称为本振梳)合波。接着用波分解复用器将不同波长对分离到不同通道,拍频(即光电探测)、滤波后获得分割好的信号。该方法利用两组光梳的梳齿间隔差异,将不同中心频率处的信号分量下变频到同一中心频率。由于中心频率固定的电学滤波器性能较高且较易实现,该方案有望获得优异的性能。但由于光电探测输出的电流正比于输入光场的平方,处于光本振梳齿两侧的频谱分量将同时下变频并在频域中混叠[68],无法用滤波器滤除,从而产生镜频干扰。解决此问题的方法是引入同相/正交(I/Q)解调和电域数字信号处理[69-71],或使用微波光子镜频抑制混频结构[72]在光模拟域实现带内干扰的抑制[73-76]。通过引入基于Hartley结构的微波光子镜频抑制混频,南京航空航天大学实现了对瞬时带宽为5 GHz的射频信号的信道化接收,信道数为5,信道间串扰抑制比优于25 dB[74]。相比于基于数字I/Q处理的解调方法,基于光子模拟域镜频抑制混频的解调方法可降低对电计算资源的需求,提高瞬时处理带宽和处理速度。
与相干光信道化相关的另一个问题是,需要大量的高质量光梳齿才能实现高分辨率的宽带频谱感知。南京航空航天大学通过引入基于平衡Hartley架构的微波光子双输出镜频抑制混频器,使每个光本振梳齿可输出两个信道,将所需梳齿数减少了一半[75];通过引入偏分复用技术,将梳齿数的要求再降低了一半[76];进一步结合信号光频梳的双边带调制,还可将梳齿数的要求降低到 1/8[77]。值得指出的是,基于平衡Hartley架构的微波光子镜频抑制混频器[78]可同时实现对镜频干扰和多种混频杂散的抑制,这对于消除多倍频程超宽带信道化接收中的非线性串扰尤其重要。当然,基于微波光子信道化的频谱感知方法仍然需要电ADC采样量化和电DSP处理,难以实现快速(近实时)的频谱感知。
另外一类利用光子技术进行频谱感知的方法是光子傅里叶变换。其基本原理是利用时-频之间的映射关系,将输入射频信号的频谱直接映射到时域,从而可以在不使用电DSP的情况下直接在时域得到输入信号的频谱信息。一种实现光子傅里叶变换的直接方法是应用二阶光学色散介质的时-频映射关系[79-82]。在空间域,人们可以采用夫琅禾费衍射实现输入光束的傅里叶变换;基于时空对应原理,光学二阶色散对应于空间中的衍射效应[79],因而光脉冲经过二阶色散介质后所得到时域波形与输入光脉冲的频谱形状一致[80-81]。但该方案对输入信号的脉宽与色散介质的色散量均有较高要求,需要满足远场条件,且变换精度不高,通常在GHz量级。为了提高频率分辨率,北京邮电大学提出并验证了带宽放大方法[82]。另一种典型的光子傅里叶变换方法是时间透镜。该方法同样基于时空对应的原理,类似于空间透镜成像系统。在空间光学系统中,当透镜将位于远场的衍射图样汇聚到其方焦平面处,即可获得透射光场的空间傅里叶变换。类似地,时间透镜是在时域上给光信号施加二次相位调制,级联光学色散即可完成“成像”,实现时频域的傅里叶变换。该类方案不需要满足远场条件。但是时间透镜通常利用相位调制、交叉相位调制或者四波混频等非线性效应实现,时间窗口十分有限,分辨率难以提升。
光子傅里叶变换也可以通过光子时间卷积系统[83]实现。超短光脉冲经过时域拉伸之后,注入电光调制器,电光调制器将待变换的射频信号加载到拉伸后的光脉冲上,然后经过时域压缩后注入光电探测器,得到的电流就是所调制射频信号的傅里叶变换结果。时域拉伸和时域压缩可由具有相反色散值的色散介质实现。为了降低采样输出波形对ADC的要求,可引入时域放大技术[84]和异步光学采样技术[85]。为了解决分辨率低的难题,加拿大Jose Azana教授等提出了基于循环移频的实时傅里叶变换方案[86],将入射信号在一个光学环路中移频和延时,并将不同循环次数的结果叠加,即可得到与傅里叶变换定义等效的输出。实验实现了分辨率为30 kHz的实时傅里叶变换,但该系统的瞬时带宽受限,只有数十MHz。南京航空航天大学理论分析了色散均衡和高阶色散对光子时间卷积系统傅里叶变换结果的影响,并据此提出了基于双向光纤布拉格光栅的光子傅里叶变换方法[87]。图2为基于该方法形成的光子傅里叶变换样机、测试界面和测试结果,测试范围为 1~70 GHz,测量分辨率达到±5 MHz。对于输入的7~14 GHz线性调频信号,基于光子傅里叶变换的测试结果如图2(b)所示,测得的信号频谱为7.00~14.05 GHz,其幅度不平坦可通过校准去除。作为对比,用电频谱仪(R&SFSV40, 10 Hz~40 GHz)测试得到的频谱图如图2(c)所示,两者具有良好的吻合度。
图2 南京航空航天大学构建的光子傅里叶变换样机和测试结果
微波光子捷变频宽带波形产生方法主要包括频谱整形及频时映射法、半导体激光器外注入法,以及光数模转换法(DAC)等。
频谱整形及频时映射法首先利用光域频谱整形器调控超短光脉冲的频域分布,然后利用色散介质将频域形状映射到时域形状。通过改变频谱整形器的响应即可实现捷变频波形的产生[89]。可重构光域频谱整形器可由可编程空间光处理器[90-92]、梳状滤波器[93-94]、布拉格光栅[95-96],以及可编程级联微环谐振腔[97]等实现。这类方法所产生的微波信号一般带宽较大,可达数十GHz,但是由于色散介质的色散值十分有限,所产生微波信号的时宽通常只有几十ns。此外,光谱整形器的分辨率通常大于数GHz,导致时域频谱整形及频时映射法的波形质量不高。
半导体激光器外注入法是通过控制注入到半导体激光器的光强度,调控激光器腔内的等效折射率,进而改变激光器的等效腔长和激射波长[98-100],经过光电探测之后,激光器激射波长与外注入激光波长拍频产生微波信号。通过低速电信号控制光注入强度的时域分布,即可实现输出微波信号频率的任意变化。此前,人们已经通过该方法实现了线性调频连续波[101-102]、Costas跳频序列[103]、三角波[104-105]等波形的产生,所产生波形的中心频率、带宽、时间宽度、重复频率和占空比等均可重构,例如:南京航空航天大学基于该方法产生了频率覆盖范围10~67 GHz,瞬时带宽12 GHz,时间带宽积120 000的线性调频信号[106]。
光数模转换法的基本原理与电子技术的DAC类似,但由于光脉冲可提供超高的时钟速度和更低的时间抖动,因此光DAC可实现更大的带宽和更高的分辨率。首先根据所要产生的微波信号设计出对应的数字序列,然后将该数字序列注入到光DAC链路中进行加权求和。光DAC的实现方式主要包括三种:并行权重DAC[107-114]、串行权重DAC[115-116]及基于脉冲形状识别的DAC[117]。南京航空航天大学通过一个4 bit的光DAC实现了三角波、方波、锯齿波以及抛物线形的微波信号的产生[118],清华大学基于光DAC产生了W波段8 GHz带宽的线性调频信号[119]。但是目前光DAC有效位数仍然较小,因此产生信号的质量仍有较大提升空间。
为了实现认知雷达的并行工作能力,南京航空航天大学提出了一种基于光频梳的可重构波形产生方法[120-121],可实现波形时宽、带宽以及中心频率的灵活调节,也可实现多频段信号的产生。图3为该波形产生方法的结构框图和部分实验结果[120]。双光频梳模块产生两组相位相关但间隔不同的光频梳,线性调频中频信号调制到信号光梳上,并和本振光梳送入可编程光处理器中进行通道分割,每一个通道包含一根调制后的信号光梳和一根本振光梳,光电转换后即可将低频信号上变频为不同中心频率的射频信号。对相应通道的光信号进行适当延时并合波,还可以实现步进频信号,以及时宽带宽积提升N×N倍的线性调频信号的产生。基于该方案,实验获得了中心频率分别为11,13,15,17和19 GHz,带宽为2 GHz的步进频线性调频信号,其时频图如图3(b)所示。图3(c)给出了通过光域拼接产生的带宽10 GHz、时宽5 μs、中心频率25 GHz的线性调频信号的时频图。
图3 基于双光频梳的多波段可重构信号产生原理图以及时频结果图
提升成像的分辨率需要增加雷达发射信号的带宽,但这显然与当前日益紧张的频谱资源产生矛盾。如果综合使用分布在不同频带上的、未被占用的、离散的频谱获得等效的宽带探测,就有希望使雷达在不受干扰的情况下实现高分辨的成像。这就引出一个新的问题——如何对非连续频带的信号进行处理以获得高分辨率成像。
美国林肯实验室早在1997年就开展了相关技术的研究,并公开发表了一种使用稀疏子带对目标进行成像的方法[122]。该方法考虑了由时间同步、天线位置等因素造成的不同频带上的不相干问题,通过使用全极点模型对不同频段的回波信号进行相干处理,然后使用带宽外推及插值的办法获得全频段的融合信号,再通过脉冲压缩处理实现高分辨率的探测。在实验中,林肯实验室利用两个带宽均为1 GHz(13~14 GHz,16~18 GHz)的频段数据,融合得到了带宽为6 GHz(12~18 GHz)的探测结果,如图4所示[122]。图4(a)为待探测的目标,图4(b)~(d)分别为低频段、高频段和融合后的探测结果。该工作首次展示了使用非连续频带信号实现高分辨率探测成像的可能。基于全极点模型,研究人员进行了广泛的研究,也取得了很多成果[123-125]。但是,全极点模型在实际应用中并非完全适用,比如其阶数、极点的数目难以准确估计,从而造成较大探测误差。
图4 林肯实验室非连续频带成像结果
2006年,Donoho正式提出了压缩感知的概念[126]。随后,Baraniuk提出将压缩感知应用于雷达中,为利用非连续频带信号实现高分辨成像提供了新思路:基于雷达成像的稀疏性特点,使用压缩感知实现对非连续频带信号的处理,获得高分辨率成像[127]。在实际应用中,可以使用步进频或从中随机选取一些频点作为探测信号,再使用压缩感知理论恢复全频带的数据。图5(a)为使用了全部采样结果恢复出的反射投影结果,而图5(b)是使用了部分采样结果再通过压缩感知恢复出的结果,可以看到图5(b)的旁瓣更低,分辨率更高[128]。
图5 传统全部采样算法与压缩感知算法成像对比
国内外对非连续频带信号处理的研究使雷达实现超高分辨率成像成为可能,但是受限于电子技术的带宽瓶颈,即便使用非连续频带的信号,传统电子雷达也面临巨大挑战。单一电子雷达系统难以覆盖多个频段,即便采用频段融合、压缩感知等技术,也难以实现等效超大带宽的探测;而如果采用工作在不同频带的多个电子雷达系统探测,不仅使系统复杂、成本高昂,还需对各子系统进行时钟同步、相干处理等,增加数据运算量,难以实现快速的成像探测。将微波光子技术应用于非连续频带的雷达探测,有望充分使用空闲频谱资源,实现超高分辨率的探测。2018年,Bogoni团队提出了面向微波光子多波段相干稀疏雷达的自回归融合算法[129]。得益于微波光子雷达产生的多波段信号之间的相干性,该算法与林肯实验室提出的融合算法相比,不再需要相干处理,从而降低了计算复杂度。
2019年,清华大学提出并演示了一种基于微波光子技术的双波段雷达[130]。该雷达采用光数模转换技术,可以产生大带宽的双波段相干线性调频信号,因此,在信号处理时避免了大量的相位补偿计算。在实验中,雷达使用S波段带宽为1.5 GHz(2~3.5 GHz)和X波段带宽为3 GHz(8.5~11.5 GHz)的信号,经过融合处理得到1.6 cm的一维距离分辨率,近似于使用带宽为9.5 GHz(2~11.5 GHz)得到的结果。
南京航空航天大学于2020年提出了一种基于步进频信号的微波光子成像雷达,将Ka及以下频段的雷达距离分辨率提升至亚厘米级(约8.5 mm)[131]。该雷达可发射与处理高达18.2 GHz带宽的步进频信号,且经过简单升级还可使用更高频率和更大带宽的步进频信号进行探测。使用该雷达对如图6(a)所示的目标进行探测,分别得到图6(b)~(d)的雷达图像。图6(b)是使用频率无间隔的步进频信号并使用合成宽带方法处理的结果,但这么大的连续频谱易受干扰,图6(c)为模拟干扰情况下得到的图像。在这种情况下,我们采用频谱认知结果,剔除干扰频段,仅使用不连续的机会频带进行探测再进行融合处理,得到了图6(d)所示的图像,可以看到目标的轮廓得到了较好的恢复。
图6 微波光子雷达成像探测目标及结果
雷达是现代战争和未来智能化平台的关键装备,随着电磁频谱环境的日趋复杂,“认知”成为未来雷达系统的必备能力。微波光子技术由于具备宽带承载、实时处理以及灵活可重构的优势,有望成为构建宽带认知雷达系统的关键使能技术。本文探讨了一种能融合多个机会频带以实现高分辨率探测的微波光子认知雷达系统架构,采用微波光子实时频谱侦测技术实现机会频谱的发现,微波光子可重构波形产生技术实现机会频谱的利用,宽带稀疏频谱信号融合成像技术实现机会频谱的处理,最终在复杂瞬变的电磁频谱环境下实现高分辨率探测,有效提升雷达系统的探测能力、生存能力和环境适应能力。
尽管本文已在一定程度上证明了微波光子认知雷达系统的可行性和优势,但该系统涵盖了多学科领域,从系统架构、测试平台、信号处理、控制算法、安全性到网络协同等都需要通过开展多学科协同研究实现优化,从而充分发挥微波光子学在认知雷达系统中的优势。特别是近年来微波光子信号处理的研究不断取得进展,将使微波光子认知雷达系统不仅能够认知频谱,还有望认知信号、认知目标、认知地理杂波,从而可充分利用时、频、空、能等多维资源实现高效探测。另一方面,集成微波光子学正在迅速发展,有望实现更紧凑和更可靠的微波光子认知雷达系统,拓展其适装平台和应用场景,从而为未来应用提供清晰、可靠、智能的全天候探测手段。
[1]GHELFI P, LAGHEZZA F, SCOTTI F, et al.A Fully Photonics-Based Coherent Radar System[J].Nature,2014,507(7492):341-345.
[2]MCKINNEY J D.Photonics Illuminates the Future of Radar[J].Nature,2014,507(7492):310-312.
[3]PAN S L, ZHANG Y M.Microwave Photonic Radars[J].Journal of Lightwave Technology,2020,38(19):5450-5484.
[4]PAN S L, YE X W, ZHANG Y M, et al.Microwave Photonic Array Radars[J].IEEE Journal of Microwaves,2021,1(1):176-190.
[5]LI R M, LI W Z, DING M L, et al.Demonstration of a Microwave Photonic Synthetic Aperture Radar Based on Photonic-Assisted Signal Generation and Stretch Processing[J].Optics Express,2017,25(13):14334-14340.
[6]ZHANG F, GUO Q, WANG Z, et al.Photonics-Based Broadband Radar for High-Resolution and Real-Time Inverse Synthetic Aperture Imaging[J].Optics Express,2017,25(14):16274-16281.
[7]WANG A L, WO J H, LUO X, et al.Ka-Band Microwave Photonic Ultra-Wideband Imaging Radar for Capturing Quantitative Target Information[J].Optics Express, 2018,26(16):20708-20717.
[8]WU D, LI S, XUE X, et al.Photonics Based Microwave Dynamic 3D Reconstruction of Moving Targets[J].Optics Express, 2018,26(21):27659-27667.
[9]PREUSSLER S, SCHWARTAU F, SCHOEBEL J, et al.Photonically Synchronized Large Aperture Radar for Autonomous Driving[J].Optics Express,2019,27(2):1199-1207.
[10]CHENG R, WEI W, XIE W L, et al.Photonic Generation of Programmable Coherent Linear Frequency Modulated Signal and its Application in X-Band Radar System[J].Optics Express,2019,27(26):37469-37480.
[11]DONG J W, ZHANG F B, JIAO Z K, et al.Microwave Photonic Radar with a Fiber-Distributed Antenna Array for Three-Dimensional Imaging[J].Optics Express,2020,28(13):19113.
[12]LI S M, CUI Z Z, YE X W, et al.Chip-Based Microwave-Photonic Radar for High-Resolution Imaging[J].Laser & Photonics Reviews,2020,14(10):1900239.
[13]HAYKIN S.Cognitive Radio: Brain-Empowered Wireless Communications[J].IEEE Journal on Selected Areas in Communications,2005,23(2):201-220.
[14]JACYNA G M, FELL B, MCLEMORE D.A High-Level Overview of Fundamental Limits Studies for the DARPA SSPARC Program[C]∥2016 IEEE Radar Conference, Philadelphia, PA, USA: IEEE, 2016:1-6.
[15]HOST P.TRACE: Target Recognition and Adaptation in Contested Environments[EB/OL].[2016-05-11].https:∥www.defensedaily.com/deep-learning-analytics-develops-darpa-deep-machine-learning-prototype/advanced-transformational-technology.
[16]MICHILIDIS P.ROBORDER:Autonomous Swarm of Heterogeneous Robots for Border Surveillance[J/OL].https:∥roborder.eu.
[17]CAPRARO G T, FARINA A, GRIFFITHS H, et al.Knowledge-Based Radar Signal and Data Processing: a Tutorial Review[J].IEEE Signal Processing Magazine,2006,23(1):18-29.
[18]ABRAMOVICH Y I, RANGASWAMY M, JOHNSON B A, et al.Performance of 2-D Mixed Autoregressive Models for Airborne Radar STAP: KASSPER-Aided Analysis[C]∥2008 IEEE Radar Conference, Rome, Italy: IEEE,2008:1-5.
[19]GUERCI J R, BARANOSKI E J.Knowledge-Aided Adaptive Radar at DARPA: an Overview[J].IEEE Signal Processing Magazine,2006,23(1):41-50.
[20]CAPRARO G, BALDYGO W, DAY R, et al.Autonomous Intelligent Radar System(AIRS)for Multi-Sensor Radars[C]∥1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico:IEEE,2005:16-19.
[21]GUERCI J R, GUERCI R M, LACKPOUR A, et al.Joint Design and Operation of Shared Spectrum Access for Radar and Communications[C]∥2015 IEEE Radar Conference, Arlington, VA, USA: IEEE,2015:761-766.
[22]PARK J I, PARK S H, KIM K T.New Discrimination Features for SAR Automatic Target Recognition[J].IEEE Geoscience and Remote Sensing Letters, 2013,10(3):476-480.
[23]YAN J K, LIU H W, PU W Q, et al.Joint Threshold Adjustment and Power Allocation for Cognitive Target Tracking in Asynchronous Radar Network[J].IEEE Trans on Signal Processing,2017,65(12):3094-3106.
[24]JIU B, LIU H W, ZHANG L, et al.Wideband Cognitive Radar Waveform Optimization for Joint Target Radar Signature Estimation and Target Detection[J].IEEE Trans on Aerospace and Electronic Systems,2015,51(2):1530-1546.
[25]SUN H, LI M, ZUO L, et al.Joint Threshold Optimization and Power Allocation of Cognitive Radar Network for Target Tracking in Clutter[J].Signal Processing,2020,172:107566.
[26]ZHANG Q H, WU J J, SONG Y, et al.Bistatic-Range-Doppler-Aperture Wavenumber Algorithm for Forward-Looking Spotlight SAR with Stationary Transmitter and Maneuvering Receiver[J].IEEE Trans on Geoscience and Remote Sensing,2021,59(3):2080-2094.
[27]CHEN P, WU L N.Target Scattering Coefficients Estimation in Cognitive Radar Under Temporally Correlated Target and Multiple Receive Antennas Scenario[J].IEICE Trans on Communications,2015(9):1914-1923.
[28]ZHOU Q S, LI Z H, SHI J P, et al.Robust Cognitive Transmit Waveform and Receive Filter Design for Airborne MIMO Radar in Signal-Dependent Clutter Environment[J].Digital Signal Processing,2020,101:102709.
[29]WANG S L, BI D P, LI J P, et al.Joint Detection and Tracking Algorithm for Cognitive Radar Based on Parallel Structure of EKF and Particle Filter[J].IET Radar, Sonar & Navigation,2019,13(11):1990-1997.
[30]WEI W Y, WEI Y S, XU R Q.Cognitive Radar Waveform Design with the Signal-to-Clutter-Plus-Noise Ratio and Filtered Integrated Sidelobe Level Considerations[J].Journal of Applied Remote Sensing,2018,12(4):1.
[31]FENG X, ZHAO Y N, ZHOU Z Q, et al.Waveform Design with Low Range Sidelobe and High Doppler Tolerance for Cognitive Radar[J].Signal Processing,2017,139:143-155.
[32]ZHANG H W, LIU W J, XIE J W, et al.Joint Subarray Selection and Power Allocation for Cognitive Target Tracking in Large-Scale MIMO Radar Networks[J].IEEE Systems Journal,2020,14(2):2569-2580.
[33]WANG J J, GUAN S H, JIANG C X, et al.Network Association in Machine-Learning Aided Cognitive Radar and Communication Co-Design[J].IEEE Journal on Selected Areas in Communications,2019,37(10):2322-2336.
[34]WANG L, ZHU W, ZHANG Y L, et al.Multi-Target Detection and Adaptive Waveform Design for Cognitive MIMO Radar[J].IEEE Sensors Journal,2018,18(24):9962-9970.
[35]闫东,张朝霞,赵岩,等.基于信号杂波噪声比的认知雷达扩展目标探测波形设计[J].计算机应用,2015,35(7):2105-2108.
[36]WANG Q, DU P F, DOU T D, et al.Cognitive Passive Radar System: Software Defined Radio and Deep Learning Approach[J].The Journal of Engineering,2019(21):7326-7330.
[37]孙俊.智能化认知雷达中的关键技术[J].现代雷达,2014,36(10):14-19.
[38]金林.智能化认知雷达综述[J].现代雷达,2013,35(11):6-11.
[39]代泽洋, 王贺, 刘宝泉,等.认知雷达中协作频谱感知技术研究[J].雷达科学与技术,2015,13(1):17-20.
DAI Zeyang, WANG He, LIU Baoquan, et al.Study on Cooperative Spectrum Sensing in Cognitive Radar[J].Radar Science and Technology,2015,13(1):17-20.(in Chinese)
[40]PAN S L, ZHU D.Broadband Cognitive Radio Enabled by Photonics[C]∥45th European Conference on Optical Communication, Dublin, Ireland:IET,2019:1-3.
[41]ZHU D, PAN S L.Broadband Cognitive Radio Enabled by Photonics[J].Journal of Lightwave Technology,2020,38(12):3076-3088.
[42]CHEN H W, LI R Y, LEI C, et al.Photonics-Assisted Serial Channelized Radio-Frequency Measurement System with Nyquist-Bandwidth Detection[J].IEEE Photonics Journal,2014,6(6):1-7.
[43]LI R Y, CHEN H W, YU Y, et al.Multiple-Frequency Measurement Based on Serial Photonic Channelization Using Optical Wavelength Scanning[J].Optics Letters,2013,38(22):4781-4784.
[44]LI R, CHEN H, LEI C, et al.Optical Serial Coherent Analyzer of Radio-Frequency(OSCAR)[J].Optics Express,2014,22(11):13579-13585.
[45]ONORI D, SCOTTI F, LAGHEZZA F, et al.A Photonically Enabled Compact 0.5-28.5 GHz RF Scanning Receiver[J].Journal of Lightwave Techno-logy,2018,36(10):1831-1839.
[46]ZHANG B W, ZHU D, CHEN H, et al.Microwave Frequency Measurement Based on an Optically Injected Semiconductor Laser[J].IEEE Photonics Technology Letters,2020,32(23):1485-1488.
[47]NGUYEN T A, CHAN E H W, MINASIAN R A.Photonic Multiple Frequency Measurement Using a Frequency Shifting Recirculating Delay Line Structure[J].Journal of Lightwave Technology, 2014, 32(20):3831-3838.
[48]CHENG L, CHEN M H, CHEN H W, et al.Recirculating Frequency Shifting Based Photonic-Assisted Broadband Instantaneous Radio-Frequency Measurement[C]∥ CLEO: Science and Innovations, San Jose, CA, USA: Optical Society of America, 2014: 8-13.
[49]LEI C, CHEN H W, LI R Y, et al.Broadband High-Resolution Programmable Radio Frequency Signal Analysis[J].SPIE Newsroom, 2014: 1-3.
[50]NGUYEN T A, CHAN E H W, MINASIAN R A.Instantaneous High-Resolution Multiple-Frequency Measurement System Based on Frequency-to-Time Mapping Technique[J].Optics Letters, 2014, 39(8):2419-2422.
[51]WANG X, ZHOU F, GAO D S, et al.Wideband Adaptive Microwave Frequency Identification Using an Integrated Silicon Photonic Scanning Filter[J].Photonics Research, 2019, 7(2):172-181.
[52]LONG X, ZOU W W, CHEN J P.Broadband Instantaneous Frequency Measurement Based on Stimulated Brillouin Scattering[J].Optics Express, 2017, 25(3):2206-2214.
[53]ZOU W W, LONG X, LI X, et al.Brillouin Instantaneous Frequency Measurement with an Arbitrary Response for Potential Real-Time Implementation[J].Optics Letters, 2019, 44(8):2045-2048.
[54]WINNALL S T, LINDSAY A C, AUSTIN M W, et al.A Microwave Channelizer and Spectroscope Based on an Integrated Optical Bragg-Grating Fabry-Perot and Integrated Hybrid Fresnel Lens System[J].IEEE Trans on Microwave Theory and Techniques, 2006, 54(2):868-872.
[55]HUNTER D B, EDVELL L G, ENGLUND M A.Wideband Microwave Photonic Channelised Receiver[C]∥2005 International Topical Meeting on Microwave Photonics, Seoul, Korea(South):IEEE, 2005:249-252.
[56]SONG S J, YI X K, HUANG T.Microwave Photonic Channelized Receiver Based on Double Co-lumn Microring Array[C]∥2015 Opto-Electronics and Communications Conference(OECC),Shanghai, China:IEEE, 2015:1-3.
[57]BRS C S, ZLATANOVIC S, WIBERG A O J, et al.Parametric Photonic Channelized RF Receiver[J].IEEE Photonics Technology Letters, 2011, 23(6):344-346.
[58]BRS C S, ZLATANOVIC S, WIBERG A O J, et al.Reconfigurable Parametric Channelized Receiver for Instantaneous Spectral Analysis[J].Optics Express, 2011, 19(4):3531-3541.
[59]BRÉS C S, WIBERG A O J, ZLATANOVIC S, et al.Characterization of Parametric RF Channelized Receiver Through Time Domain Monitoring[C]∥2012 Conference on Lasers and Electro-Optics(CLEO),San Jose, CA, USA:IEEE, 2012:1-2.
[60]ZOU X H, ZOU X H, LI W Z, et al.Photonic Microwave Channelizer with Improved Channel Characteristics Based on Spectrum-Controlled Stimulated Brillouin Scattering[C]∥ 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA, USA:IEEE,2013:3470-3478.
[61]XIE X J, DAI Y T, JI Y, et al.Broadband Photonic Radio-Frequency Channelization Based on a 39 GHz Optical Frequency Comb[J].IEEE Photonics Technology Letters, 2012, 24(8):661-663.
[62]ZOU X H, PAN W, LUO B, et al.Photonic Approach for Multiple-Frequency-Component Measurement Using Spectrally Sliced Incoherent Source[J].Optics Letters, 2010, 35(3):438-440.
[63]GU X W, ZHU D, LI S M, et al.Photonic RF Channelization Based on Series-Coupled Asymmetric Double-Ring Resonator Filter[C]∥The 7th IEEE/International Conference on Advanced Infocomm Technology,Fuzhou, China:IEEE, 2014: 240-244.
[64]ADLEMAN J R, ZLATANOVIC S, KVAVLE J M, et al.High Finesse Compound Optical Ring Filter for Parametric Multicasting RF Channelization[C]∥2013 IEEE International Topical Meeting on Microwave Photonics, Alexandria, VA, USA:IEEE, 2013:257-260.
[65]XU X Y, TAN M X, WU J Y, et al.Broadband Photonic RF Channelizer with 92 Channels Based on a Soliton Crystal Microcomb[J].Journal of Lightwave Technology, 2020, 38(18):5116-5121.
[66]WANG J J, CHEN M H, YU H C, et al.Photonic-Assisted Seamless Channelization Based on Integrated Three-Stage Cascaded DIs[C]∥2013 IEEE International Topical Meeting on Microwave Photonics, Alexandria, VA, USA:IEEE, 2013:21-24.
[67]STRUTZ S J, WILLIAMS K J.An 8-18-GHz All-Optical Microwave Downconverter with Channelization[J].IEEE Trans on Microwave Theory and Techniques, 2001, 49(10):1992-1995.
[68]TANG Z Z, ZHU D, PAN S L.Coherent RF Channelizer Based on Dual Optical Frequency Combs and Image-Reject Mixers[C]∥2017 International Topical Meeting on Microwave Photonics, Beijing, China: IEEE, 2017: 1-4.
[69]XIE X J, DAI Y T, XU K, et al.Broadband Photonic RF Channelization Based on Coherent Optical Frequency Combs and I/Q Demodulators[J].IEEE Photonics Journal, 2012, 4(4):1196-1202.
[70]WIBERG A O J, ESMAN D J, LIU L, et al.Photonic RF-Channelized Receiver Based on Wideband Parametric Mixers and Coherent Detection[C]∥2014 Conference on Lasers and Electro-Optics(CLEO)-Laser Science to Photonic Applications,San Jose, CA, USA:IEEE, 2014:1-2.
[71]WIBERG A O J, ESMAN D J, LIU L, et al.Cohe-rent Filterless Wideband Microwave/Millimeter-Wave Channelizer Based on Broadband Parametric Mixers[J].Journal of Lightwave Technology, 2014, 32(20):3609-3617.
[72]ZHU D,PAN S.Photonics-Based Microwave Image-Reject Mixer[J].Photonics, 2018, 5(2):6.
[73]ZHU D, CHEN W J, CHEN Z W, et al.RF Front-End Based on Microwave Photonics[C]∥2017 Opto-Electronics and Communications Conference(OECC)and Photonics Global Conference, Singapore: IEEE, 2017:1-3.
[74]TANG Z Z, ZHU D, PAN S L.Coherent Optical RF Channelizer with Large Instantaneous Bandwidth and Large in-Band Interference Suppression[J].Journal of Lightwave Technology, 2018, 36(19):4219-4226.
[75]CHEN W, ZHU D, XIE C, et al.Microwave Channelizer Based on a Photonic Dual-Output Image-Reject Mixer[J].Optics Letters, 2019, 44(16):4052-4055.
[76]XIE C X, ZHU D, CHEN W J, et al.Microwave Channelizer Based on Polarization Multiplexing and Photonic Image-Reject Mixing[C]∥2019 Interna-tional Topical Meeting on Microwave Photonics(MWP), Ottawa, ON, Canada: IEEE, 2019:1-4.
[77]XIE C X, ZHU D, CHEN W J, et al.Microwave Photonic Channelizer Based on Polarization Multiplexing and Photonic Dual Output Image Reject Mixer[J].IEEE Access, 2019(7):158308-158316.
[78]ZHU D, CHEN W J, PAN S L.Photonics-Enabled Balanced Hartley Architecture for Broadband Image-Reject Microwave Mixing[J].Optics Express, 2018, 26(21):28022-28029.
[79]SALEM R, FOSTER M A, GAETA A L.Application of Space-Time Duality to Ultrahigh-Speed Optical Signal Processing[J].Advances in Optics and Photonics, 2013, 5(3):274-317.
[80]JANNSON T.Real-Time Fourier Transformation in Dispersive Optical Fibers[J].Optics Letters, 1983, 8(4):232-234.
[81]MURIEL M A, AZAA J, CARBALLAR A.Real-Time Fourier Transformer Based on Fiber Gratings[J].Optics Letters, 1999, 24(1):1-3.
[82]ZHENG Y, LI J L, DAI Y T, et al.Real-Time Fourier Transformation Based on the Bandwidth Magnification of RF Signals[J].Optics Letters, 2018, 43(2):194-197.
[83]SAPERSTEIN R E, PANASENKO D, FAINMAN Y.Demonstration of a Microwave Spectrum Analyzer Based on Time-Domain Optical Processing in Fiber[J].Optics Letters, 2004, 29(5):501-503.
[84]DUAN Y H, CHEN L, ZHOU H D, et al.Ultrafast Electrical Spectrum Snalyzer Based on all-Optical Fourier Transform and Temporal Magnification[J].Optics Express, 2017, 25(7):7520-7529.
[85]DUAN Y H, CHEN L, ZHANG L, et al.Temporal Radio-Frequency Spectrum Analyzer, Based on Asynchronous Optical Sampling Assisted Temporal Convolution[J].Optics Express, 2018, 26(16):20735-20743.
[86]DE CHATELLUS H G, CORTÉS L R, AZAA J.Optical Real-Time Fourier Transformation with Kilohertz Resolutions[J].Optica, 2016, 3(1):1-8.
[87]ZHANG B W, ZHU D, LEI Z, et al.Impact of Dispersion Effects on Temporal-Convolution-Based Real-Time Fourier Transformation Systems[J].Journal of Lightwave Technology, 2020, 38(17):4664-4676.
[88]WON N.A Channelized Digital Ultrawideband Receiver[J].IEEE Trans on Wireless Communications, 2003, 2(3):502-510.
[89]YAO J P.Arbitrary Waveform Generation[J].Nature Photonics, 2010, 4(2):79-80.
[90]CHOU J, HAN Y, JALALI B.Adaptive RF-Photonic Arbitrary Waveform Generator[J].IEEE Photonics Technology Letters, 2003, 15(4):581-583.
[91]LEAIRD D E, WEINER A M.Femtosecond Direct Space-to-Time Pulse Shaping in an Integrated-Optic Configuration[J].Optics Letters, 2004, 29(13):1551-1553.
[92]RASHIDINEJAD A, WEINER A M.Photonic Radio-Frequency Arbitrary Waveform Generation with Maximal Time-Bandwidth Product Capability[J].Journal of Lightwave Technology, 2014, 32(20):3383-3393.
[93]YE J, YAN L S, PAN W, et al.Two-Dimensionally Tunable Microwave Signal Generation Based on Optical Frequency-to-Time Conversion[J].Optics Letters, 2010, 35(15):2606-2608.
[94]ZHANG F Z, GE X Z, PAN S L, et al.Photonic Generation of Pulsed Microwave Signals with Tunable Frequency and Phase Based on Spectral-Shaping and Frequency-to-Time Mapping[J].Optics Letters, 2013, 38(20):4256-4259.
[95]WANG C, YAO J P.Large Time-Bandwidth Product Microwave Arbitrary Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating[J].Journal of Lightwave Technology, 2010, 28(11):1652-1660.
[96]WANG C, YAO J P.Phase-Coded Millimeter-Wave Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating[J].IEEE Photonics Technology Letters, 2012, 24(17):1493-1495.
[97]KHAN M H, SHEN H, XUAN Y, et al.Ultrabroad-Bandwidth Arbitrary Radiofrequency Waveform Generation with a Silicon Photonic Chip-Based Spectral Shaper[J].Nature Photonics, 2010, 4(2):117-122.
[98]CHAN S C.Analysis of an Optically Injected Semiconductor Laser for Microwave Generation[J].IEEE Journal of Quantum Electronics, 2010, 46(3):421-428.
[99]HWANG S K, LIU J M, WHITE J K.Characteristics of Period-one Oscillations in Semiconductor Lasers Subject to Optical Injection[J].IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5):974-981.
[100]PAN S L, YAO J P.Wideband and Frequency-Tunable Microwave Generation Using an Optoelectronic Oscillator Incorporating a Fabry-Perot Laser Diode with External Optical Injection[J].Optics Letters, 2010, 35(11):1911-1913.
[101]ZHUANG J P, LI X Z, LI S S, et al.Frequency-Modulated Microwave Generation with Feedback Stabilization Using an Optically Injected Semiconductor Laser[J].Optics Letters, 2016, 41(24):5764-5767.
[102]ZHOU P, ZHANG F Z, GUO Q S, et al.Linearly Chirped Microwave Waveform Generation with Large Time-Bandwidth Product by Optically Injected Semiconductor Laser[J].Optics Express, 2016, 24(16):18460-18467.
[103]ZHOU P, ZHANG F Z, YE X W, et al.Flexible Frequency-Hopping Microwave Generation by Dynamic Control of Optically Injected Semiconductor Laser[J].IEEE Photonics Journal, 2016, 8(6):1-9.
[104]ZHOU P, ZHANG F Z, GUO Q S, et al.A Modulator-Free Photonic Triangular Pulse Generator Based on Semiconductor Lasers[J].IEEE Photonics Technology Letters, 2018, 30(14):1317-1320.
[105]ZHANG B W, ZHU D, ZHOU P, et al.Tunable Triangular Frequency Modulated Microwave Waveform Generation with Improved Linearity Using an Optically Injected Semiconductor Laser[J].Applied Optics, 2019, 58(20):5479-5485.
[106]ZHOU P, ZHANG F Z, GUO Q S, et al.Reconfigurable Radar Waveform Generation Based on an Optically Injected Semiconductor Laser[J].IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6):1-9.
[107]SCHAFFER T A, WARREN H P, BUSTAMANTE M J, et al.A 2 GHz 12-bit Digital-to-Analog Converter for Direct Digital Synthesis Applications[C]∥GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium,18th Annual Technical Digest 1996, Orlando, FL, USA:IEEE, 1996:61-64.
[108]YACOUBIAN A, DAS P K.Digital-to-Analog Conversion Using Electrooptic Modulators[J].IEEE Photonics Technology Letters, 2003, 15(1):117-119.
[109]ODA S, MARUTA A.All-Optical Digital-to-Analog Conversion Using Nonlinear Optical Loop Mirrors[J].IEEE Photonics Technology Letters, 2006, 18(5):703-705.
[110]CURRIE M, LOU J W.Weighted, Summing Photonic Digital-to-Analogue Converter[J].Electronics Letters, 2006, 42(1):54.
[111]YU X, WANG K, ZHENG X, et al.Incoherent Photonic Digital-to-Analogue Converter Based on Broadband Optical Source[J].Electronics Letters, 2007, 43(19):1044-1045.
[112]LIAO J X, WEN H, ZHENG X P, et al.Novel Bipolar Photonic Digital-to-Analog Conversion Employing Differential Phase Shift Keying Modulation and Balanced Detection[J].IEEE Photonics Technology Letters, 2013, 25(2):126-128.
[113]DING J F, ZHANG F F, ZHU W W, et al.Optical Digital to Analog Converter Based on Microring Switches[J].IEEE Photonics Technology Letters, 2014, 26(20):2066-2069.
[114]ZHANG F Z, GAO B D, GE X Z, et al.Simplified 2-bit Photonic Digital-to-Analog Conversion Unit Based on Polarization Multiplexing[J].Optical Engineering, 2016, 55(3):031115.
[115]SAWADA K, UENOHARA H.InGaAsP/InP Optical Digital-to-Analogue Converter for 40 Gbit/s, 3-bit Operation[J].Electronics Letters, 2010, 46(10):697-698.
[116]PENG Y, ZHANG H M, ZHANG Y C, et al.Photonic Digital-to-Analog Converter Based on Summing of Serial Weighted Multiwavelength Pulses[J].IEEE Photonics Technology Letters, 2008, 20(24):2135-2137.
[117]NISHITANI T, KONISHI T, FURUKAWA H, et al.All-Optical Digital-to-Analog Conversion Using Pulse Pattern Recognition Based on Optical Correlation Processing[J].Optics Express, 2005, 13(25):10310-10315.
[118]GAO B D, ZHANG F Z, PAN S L.Experimental Demonstration of Arbitrary Waveform Generation by a 4-bit Photonic Digital-to-Analog Converter[J].Optics Communications, 2017, 383:191-196.
[119]PENG S W, LI S Y, XUE X X, et al.High-Resolution W-Band ISAR Imaging System Utilizing a Logic-Operation-Based Photonic Digital-to-Analog Converter[J].Optics Express, 2018, 26(2):1978-1987.
[120]CHEN W J, ZHU D, XIE C X, et al.Photonics-Based Reconfigurable Multi-Band Linearly Frequency-Modulated Signal Generation[J].Optics Express, 2018, 26(25):32491-32499.
[121]CHEN W J, ZHU D, LIU J, et al.Multi-Band RF Transceiver Based on the Polarization Multiplexed Photonic LOs and Mixers[J].IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(2):1-9.
[122]CUOMO K M, PIOU J E, MAYHAN J T.Ultra-Wideband Coherent Processing[J].Lincoln Laboratory Journal, 1997, 10(2):203-222.
[123]XU X J, LI J.Ultrawide-Band Radar Imagery from Multiple Incoherent Frequency Subband Measurements[J].Journal of Systems Engineering and Electronics, 2011, 22(3):398-404.
[124]ZHANG H H, CHEN R S.Coherent Processing and Superresolution Technique of Multi-Band Radar Data Based on Fast Sparse Bayesian Learning Algorithm[J].IEEE Trans on Antennas and Propagation,2014, 62(12):6217-6227.
[125]ZOU Y Q, GAO X Z, LI X, et al.A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method[J].Scientific Reports, 2016, 6(1):1-10.
[126]DONOHO D L.Compressed Sensing[J].IEEE Trans on Information Theory, 2006, 52(4):1289-1306.
[127]BARANIUK R, STEEGHS P.Compressive Radar Imaging[C]∥2007 IEEE Radar Conference,Waltham, MA, USA:IEEE, 2007:128-133.
[128]YANG J, JIN T, XIAO C, et al.Compressed Sensing Radar Imaging: Fundamentals, Challenges, and Advances[J].Sensors, 2019, 19(14):3100.
[129]HUSSAIN B, MALACARNE A, MARESCA S, et al.Auto-Regressive Spectral Gap Filling Algorithms for Photonics-Based Highly Sparse Coherent Multi-Band Radars in Complex Scenarios[C]∥2018 IEEE Radar Conference,Oklahoma City, OK, USA:IEEE, 2018: 993-998.
[130]PENG S, LI S, XUE X, et al.A Photonics-Based Coherent Dual-Band Radar for Super-Resolution Range Profile[J].IEEE Photonics Journal, 2019, 11(4):1-8.
[131]MA C, YANG Y, LIU C, et al.Microwave Photonic Imaging Radar with a Sub-Centimeter-Level Resolution[J].Journal of Lightwave Technology, 2020, 38(18):4948-4954.
潘时龙 男,1982年生,安徽马鞍山人,博士,南京航空航天大学电子信息工程学院副院长、教授、博士生导师,雷达成像与微波光子技术教育部重点实验室常务副主任,主要研究方向为基于微波光子技术的新体制雷达、无线通信、测量系统和集成微波光子学。
朱 丹 女,1983年生,安徽桐城人,博士,南京航空航天大学电子信息工程学院教授,主要从事微波光子信号处理及系统应用研究。