Radar Science and Technology

DOI:10.3969/j.issn.1672-2337.2016.03.005

ISAR 高分辨率成像方法综述

金 胜^{1,2},朱天林¹

(1.北京跟踪与通讯技术研究所,北京 100094;
 2.空间目标测量重点实验室,北京 100094)

摘 要: 逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)可以实现对目标全天时、全天候、 远距离和高分辨率的观测,在军事和民用领域中具有广泛的应用价值。首先,系统地总结了近年来在 ISAR 二维成像方面的研究进展。其次,从包络对齐与自聚焦两方面对平动补偿的研究现状进行了分析。再次, 在分析传统 ISAR 成像方法的基础上,对4种超分辨成像方法进行归纳总结。然后,对大转角成像算法进行 对比分析,给出不同算法的适用范围。同时,对多目标成像和微动目标成像的研究进展进行了综述和分析。 最后,对未来 ISAR 成像的热点问题和发展趋势进行了展望。

关键词: 逆合成孔径雷达成像; 平动补偿; 二维成像; 三维成像; 图像定标

中图分类号:TN957 **文献标志码:**A **文章编号:**1672-2337(2016)03-0251-10

A Review of High-Resolution Inverse Synthetic Aperture Radar Imaging Methods

JIN Sheng^{1,2}, ZHU Tianlin¹

(1. Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China;
2. Key Laboratory of Space Object Measurement, Beijing 100094, China)

Abstract: Because of its all-day, all weather, long range and high-resolution operation capabilities, inverse synthetic aperture radar(ISAR) has found wide applications in military and civil areas. This paper summarizes the advances in 2-D ISAR imaging in recent years. Then, it analyzes the translational motion compensation methods from envelope alignment and auto-focusing respectively. After that, four super-resolution imaging methods based on the analysis of traditional imaging techniques are reviewed. Additionally, the wide-angle imaging methods and derives their application scope are compared. Furthermore, the advances in ISAR imaging of multiple/micro-motion targets are given. Finally, the potential hotspots problems and future works are discussed.

Key words: inverse synthetic aperture radar; motion compensation; two-dimensional(2-D) ISAR imaging; three-dimensional(3-D) ISAR imaging; cross-range scaling

0 引 言

逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)^[1-3]具有全天时、全天候和高分辨率等特点,目前已在军事和民用领域获得了广泛应用。通过对被观测目标的雷达回波进行精细的信号处理,ISAR 能够获得目标的二维高分辨图像。

ISAR 观测目标一般为非合作目标,其运动状态不能事先精确获知,因而对 ISAR 回波进行高分辨率成像之前需要进行平动补偿^[4-16]。平动补偿

方法通常基于非参数化和参数化的目标平动模型,并设计有效的目标回波的包络对齐和相位补偿方法。目前,国内外关于此方面的研究相对较少,现有方法多是基于参数化平动模型进行目标 包络对齐和相位误差的联合校正。

传统的 ISAR 成像算法包括距离-多普勒 (Range Doppler, RD)算法和距离-瞬时多普勒 (Range-Instantaneous Doppler, RID)算法^[17-18]。 基于宽带外推、非线性滤波和谱估计方法, ISAR 能够获得目标的超分辨成像结果^[19-34]],近年来,基 于压缩感知原理的稀疏 ISAR 成像也受到了广泛 关注^[35-37]。而对于空间目标等稳定运行的轨道目 标,ISAR 往往能够获得其长时间的大转角观测数 据,如何充分利用其大转角观测数据实现高分辨 率成像和结构特征提取也是国内外的研究热 点^[38-40]。当民航飞机起降或飞机呈编队飞行时,常 在同一雷达波束出现多个目标,需要对多目标回 波进行分离和高分辨率成像^[41-53]。对某些具有旋 转等微动部件的目标,由于微动部件运动特征和 目标主体运动特征往往不同,因此,需要首先将目 标刚体与微动部件的回波分离,并用传统方法获 得刚体部分高分辨成像结果,同时对微动部件进 行微多普勒分析,以获得其旋转频率等特征^[54-60], 进而获取其微动部件成像结果。

最后,本文对 ISAR 的研究现状进行了分析和 总结,并对未来的发展趋势进行了展望。

1 平动补偿

在 ISAR 成像过程中,目标和雷达之间的相对 运动可以分解为平动分量和转动分量^[1]。目标平 动是指目标散射点相对于 ISAR 的整体斜距变化, 该类运动无法产生方位分辨率;转动分量是指目 标围绕参考点转动,是获得方位高分辨的基础。目 标平动使相邻一维距离像在距离向错开,同时在 相邻回波间引入相位误差,使得方位回波不相干。 因此在 ISAR 成像之前必须进行运动补偿。平动 补偿通常包括包络对齐和相位补偿两部分。

1.1 包络对齐方法

包络对齐用于消除目标相对雷达的平动造成 的相邻回波在距离向上的错位。包络对齐方法可 分为非参数化方法和参数化方法。典型的非参数 化方法包括相邻相关方法^[2]、累积相关方法^[4]、最 小熵方法^[5]和基于向量范数的包络对齐方法等。 1980年,Chen等在文献[2]中提出了包络对齐的 相邻相关法,该方法利用目标相邻回波的相关性 进行对齐,但是易出现包络漂移和突跳误差,将严 重影响后续的成像效果。文献[4]中介绍了包络对 齐的累积相关法,该方法将一次回波与前面的几 次或全部回波进行加权相关,使得各次回波都有 一个统一的基准,很大程度上减小了因逐次相关 而导致的误差积累和漂移。文献[5]提出了最小熵 包络对齐方法,将不同回波包络和波形锐化度最 大作为包络对齐的准则,通过搜索使得不同回波 包络和的熵值达到最小时的偏移量来完成包络对 齐。以上非参数化方法不要求目标运动的先验信 息,但在强噪声环境下,性能会明显下降。

典型的参数化包络对齐方法为基于粒子群优 化(Particle Swarm Optimization, PSO)拟合多项 式方法和迭代加权拟合的 ISAR 包络对齐方法等。 文献[6]提出了基于 PSO 拟合多项式的包络对齐 算法,该方法将目标包络分量建模为多项式,采用 粒子群优化算法求解拟合多项式系数,避免参数 估计陷入局部最优,但是该方法具有较高的运算 复杂度。文献[7]提出了基于迭代加权拟合的 ISAR 包络对齐方法,该方法利用目标的平稳运动 特性,通过对目标走动量和加权矩阵的迭代交替 更新实现包络对齐,能有效降低突跳误差等问题。

1.2 自聚焦处理方法

相位补偿又可以称为自聚焦,同样可分为两 类:基于特显点相位跟踪的方法和基于图像整体 评价指标的方法。

基于特显点的方法有单特显点方法、多特显 点方法,以及相位梯度自聚焦方法。特显点自聚焦 方法通常寻找一个或多个含有特显点的距离单 元,以该距离单元的特显点或者多个特显点的合 成点作为转台中心,进行相位补偿^[8-9],该方法一般 情况下都能获得目标较好的聚焦效果。相位梯度 自聚焦方法通过在图像域的循环移位、隔离和迭 代等步骤,有效地消除目标转动分量对平动相位 分量估计的影响,该方法也能达到显著的聚焦效 果。上述方法都要求目标距离单元回波中存在特 显点,但是在强噪声或低信噪比条件下,ISAR 对 特显点的相位跟踪精度会明显下降。

针对上述情况提出了基于图像整体评价指标 的自聚焦方法,文献[10]提出了基于图像最小熵 的自聚焦方法,文献[11]提出了基于最大对比度 的自聚焦方法。上述方法应用图像熵和图像对比 度等图像整体评价指标,有效地利用了 ISAR 成像 的二维相干积累获得高信噪比增益,然后采用最 优化方法实现相位扰动估计,从而对相位误差进 行准确的补偿,最终得到聚焦良好的 ISAR 图像。 但是由于需要进行多次迭代,上述方法计算量一 般较大。 文献[6]和文献[12]提出了基于 PSO 拟合多 项式的自聚焦参数化方法,该方法首先将相位误 差进行多项式建模,然后采用粒子群优化算法 (PSO)求解多项式系数。但是该方法能得到聚焦 良好的 ISAR 图像需要依赖于准确的包络对齐,在 ISAR 实测数据处理时,信噪比往往不高,上述方 法将不再适用。

针对低信噪比情形,文献[13-15]提出了一些 联合包络对齐和相位补偿的参数化平动补偿技 术,上述方法均将目标平动分量建模为二次或高 次多项式,文献[13]通过迭代最大对比度估计多 项式系数,文献[15]采用最小熵估计多项式系数, 通过拟牛顿算法,采用坐标下降法求解该优化问 题。然而,在低信噪比条件下,基于图像熵和对比 度的平动补偿方法的目标函数与多项式系数之间 的关系曲线并不是凸函数,且存在大量的局部最 优点,从而不能估计出真实的目标平动参数。为了 解决上述问题,文献[16]提出了一种基于粒子群 优化(PSO)的目标平动补偿方法,能够自适应对目 标平动分量的多项式阶数和系数进行估计,并且 提出的方法具有良好的抗噪性能。Yak-42 飞机目 标成像结果如图 1 所示。

2 ISAR 成像算法

经过上面介绍的目标运动补偿技术,目标运 动模型就转化为经典的转台运动模式,接下来就 是对回波进行相干积累,重建目标的空间分布,即 ISAR 成像。ISAR 成像算法除了有传统的 RD 算 法、RID 算法外,根据图像分辨率要求、雷达体制、 回波积累角度、目标个数、目标运动特性可将 ISAR 成像方法分为超分辨率及稀疏成像算法、大 转角成像算法、多目标 ISAR 成像算法,以及微动 目标 ISAR 成像算法等。

2.1 传统的二维成像算法

传统的 RD 成像算法主要基于目标的平稳运动情形,将目标等效为转动中心固定的转台目标, 通过发射大时宽带宽积的信号来获得距离向的高 分辨率,而方位向的高分辨则依赖于目标与雷达 视线之间大的相对转角,转角越大,方位分辨率越 高。由于 ISAR 观测目标一般为非合作目标,在观 测时间内,目标可能会包含机动等非平稳运动,利 用传统的 RD 成像算法对其进行处理时,最终成像 结果会出现散焦现象,同时在大转角成像中,目标 相干积累时间较长,目标上各散射点的多普勒变 化较大,因此提出了一种 RID 成像算法^[17]。RID 算法在距离向的处理与 RD 算法一致,在方位向上 利用短时傅里叶变换等时频变换方法获得目标的 瞬时多普勒分布信息,从而获得目标的二维高分 辨率图像。此外,还有基于解线调频 RELAX 方法 的成像算法、基于 Chirplet 分解的成像算法、基于 自适应滤波 RID 成像算法和基于多分量多项式模 型的成像算法等,这些方法的主要思路是:首先利 用基函数逼近或滤波的方法将目标回波的主要分 量提取出来成像,而将干扰分量去掉,这类方法通 常也能得到目标清晰的图像^[18]。

2.2 超分辨率成像

在 ISAR 成像中,被观测目标往往为非合作目 标且有很强的机动性,机动目标通常是三维非等 速旋转,回波信号存在很强的多普勒时变,这使得 ISAR 成像中很难有长的相干积累时间,从而无法 获得足够的方位分辨率。为了克服 ISAR 目标的 这种特性对成像的影响,实际处理中常采用超分 辨率成像[19]。超分辨成像算法主要可以分为以下 几类:第一类为宽带外推法,宽带外推也叫孔径外 推,文献「20-22]都介绍了宽带外推算法,该类算法 利用线性预测模型对观测数据进行拟合,然后对 模型参数进行估计,从而通过孔径外推法提高方 位分辨率。第二类为非线性滤波方法,而非线性滤 波超分辨率算法不能增加孔径宽度,这类方法对 脉冲映射函数进行抑制并保留主瓣能量,从而提 高分辨率,如文献[23]提出了自适应副瓣抑制方 法,文献[24]提出了 CLEAN 技术。第三类为谱估 计,其中包括参数化谱估计算法和非参数化谱估 计算法,文献[25-28]提出的 MUSIC 方法、文献 [29] 提出的 Root-MUSIC 方法,以及文献[30] 提 出的 ESPRIT 方法都是基于参数化的谱估计成像 算法,这类方法首先对回波进行参数化建模,然后 利用参数化方法分析信号的频谱,将谱估计问题 转化为数学中的参数估计问题,从而实现目标的 超分辨率成像。但是该类方法对信号模型的依赖 性很强,当信号满足假设的模型时,该类方法的精 确度很高,当信号不完全符合假设模型时,估计误 差则会增大,选择合适的模型是参数化谱估计算 法的重要问题之一。非参数化谱估计算法的基本 思想是将信号通过一个窄带滤波器,用滤波器的 输出功率除以带宽表示对输入信号频谱的一种度 量。基于滤波器组的非参数化谱估计方法,如 Copon^[31]、幅度-相位估计(Amplitude-Phase Estimation, APES)方法^[32-34]能得到较高的谱分辨率而 得到了广泛应用。

第四类为近几年发展起来的压缩感知技术。 基于压缩感知(Compressive Sensing, CS)理论的 ISAR 成像技术是最近几年才发展起来的一个研 究热点。压缩感知理论指出,在一定条件下通过求 解一个最优化问题,未知稀疏信号可利用少量观 测数据重建。压缩感知理论完全颠覆了传统的 Nvquist 采样定理中的采样频率必须大于或等于 两倍的信号带宽,这使采样所需的决定因素由原 来的信号带宽变为信号的信息结构和内容,更符 合客观的认知规律。超分辨算法是利用常规采样 但较短的数据进行处理,是 CS 处理的一个特例, 用压缩感知做超分辨成像可获得更好的成像质 量。文献[35]提出了一种范数 L₁ 傅里叶变化的超 分辨成像方法,文献「36]将点增强方法应用到 超分辨成像中。文献「377从 CS 角度出发,利用贝 叶斯压缩感知,通过自适应门限分离目标和噪声, 获得低信噪比下的 ISAR 像。图 2 是 Relax 算法、 Burg 外推算法和贝叶斯超分辨(BSR)成像结果 对比。

2.3 大转角成像

对于平稳运行的目标,ISAR 通常可获得目标 大转角的观测数据。目标相对于雷达转角的增加 可改善图像结果的方位分辨率,但随着转角的不 断增加,一些问题也随之而来。过大的转角将会导 致目标散射模型发生改变,使散射点发生越距离 单元走动,同时散射点的散射系数会随着观测视 角的改变发生较大变化,方位向分辨率的改善将 相当困难。另外,在目标大角度旋转过程当中,非 常有可能发生旋转角速度的改变,即非匀速旋转, 这也使大转角的 ISAR 成像过程更加复杂。目前, 对 ISAR 大转角成像的研究也是 ISAR 成像的一个 重要方向,针对大转角成像中的散射点越距离单 元走动问题已经有一些解决方法。Keystone 变换 被广泛用于散射点越距离单元走动的校正^[38-39]。

图 2 12,8 和 5 dB 信噪比条件下利用不同算法得到的超分辨成像结果

但是,当目标转角进一步增大而使散射点的回波 包络产生弯曲时,该 Keystone 变换方法将不再适 用。极坐标格式算法(Polar Format Algorithm, PFA)则根据中心切片定理,在目标回波的波数域 将目标的扇型波数谱支撑区插值为矩形,进而采 用二维逆傅里叶变换对目标图像进行重建。由于 该算法允许散射点的回波包络以及多普勒产生弯 曲,因此该算法适用的转角范围大于 Keystone 算 法。但是,当转角进一步增加时, PFA 算法会失 效。而基于复数逆 Radon 变换(Complex Inverse Radon Transform, CIRT)算法的大转角目标成像 算法是严格按照回波模型,在距离-慢时间域对包 络以及相位进行曲线积分以实现相干积累成像, 可实现更大转角的 ISAR 目标成像^[40]。同时,RD, Keystone, PFA 算法的主要成像过程是采用快速 傅里叶变换(Fast Fourier Transform, FFT)实现, 因此它们的运算速度高于 CIRT 算法。RD 算法、 Keystone 算法、PFA 算法的性能以及适用范围比 较结果如表1所示。

表 1 RD, Keystone 和 PFA 算法比较

	RD	Keystone	PFA	CIRT
适用转角范围	较小	较大	较大	任意转角
是否需要估计转角	否	否	是	是
图像定标	距离定标	距离定标	二维定标	二维定标
运算速度	高	较高	较高	较高

2.4 多目标成像

典型的多目标 ISAR 成像算法可分为不同 目标运动参数相近和不同目标运动参数不完全 相同两种类型。对于第一种情形,由于不同目标 运动参数相近,每个目标的距离包络分布也基 本一致,通过传统的单目标成像算法即可实现 不同目标的粗聚焦成像,然后基于图像分割技 术对不同目标回波进行分割,进而得到不同目 标的高分辨率图像^[41-42]。第二种情形相对复杂, 不同目标运动参数不同,其距离包络耦合严重,无 法应用传统的平动补偿算法。文献[42-48]基于不 同目标运动加速度不同,在方位时频平面上实现 不同目标的回波分离,进而利用单目标成像算法 完成不同目标的高分辨率成像。文献[49-51]则利 用一些曲线检测方法,如 Hough 变换^[49-50, 52]和粒 子群优化[51]等对不同目标的距离包络变化轨迹进 行拟合,估计其平动参数,最终在距离包络平面上 实现不同目标回波的分离。总之,上述多目标成像 算法均对目标运动形式或不同目标的运动参数有 一定要求,文献「53]建立了更为通用的多目标运 动模型,首先将多目标分为不同的组目标,而组目 标中包含有运动参数相近的多个目标,接着通过 粒子群优化算法对不同组目标的运动参数进行估 计,并结合改进的 CLEAN 和聚类算法对不同组目 标以及其中的单个目标进行提取,最终通过常规 的单目标成像算法获得不同目标的高分辨率成像 结果。图 3 为文献 [53] 中给出的仿真实验结果,图 3(a)为仿真所用的点目标模型,图 3(b)~(e)为 4 个点目标的 ISAR 成像结果。

2.5 微动目标成像

对于 ISAR 观测目标,如飞机、人造卫星等,除 了目标的整体运动之外,还存在发动机涡轮片、直 升机旋翼和卫星游离部件的旋转。由于旋转部件 和目标刚体部分的运动特征不同,因此无法采用 同刚体部分相同的方法对旋转部件进行清晰的 ISAR 成像。而传统的成像算法通常都是将旋转部 件的回波作为干扰进行抑制,这种方法损失了旋 转部件包含的重要结构和运动特征等信息,不利 于对目标的全面描述。目前,对含有微动部件的成 像算法研究也是目前 ISAR 成像领域的重要方向。 文献[54-55]提出根据回波特征将旋转部件和目标 主体回波进行分离,然后分别成像,但是该回波分 离法可能受到时频分析分辨率低的影响,同时也 存在算法复杂度高的难题。文献[56]在高分辨率 成像条件下,采用扩展 Hough 变换(Extended Hough Transform, EHT)得到旋转部件和目标主 体部分的图像,但是该算法得到的旋转部件图像 有较高的旁瓣。文献[57]利用广义 Radon 变换 (Generalized Radon Transform, GRT)具有检测 任意曲线的能力,依据旋转散射点实包络的特点, 结合 CLEAN 技术对旋转部件进行成像,效果较 好。另外,文献[58]和文献[59]中就旋转部件回波 与刚体回波分离方面提出了基于复数经验模态分 解(Complex Empirical Mode Decomposition, CEMD)和低调频率匹配滤波(Low Chirp Match Filter, LCMF)的分离方法。文献「60]中就旋转部 件二维成像方面,提出了基于实数逆-Radon 变换 (RIRT)和复数逆-Radon 变换(CIRT)的成像方 法,该算法相比前面提到的算法有更高的分辨率 和抗加性噪声性能。图 4 为基于 CEMD 算法和低 调频率方法分离出含有微动部件目标回波的成像 结果。

3 展望

随着 ISAR 应用环境及战场情况的日益复杂, 对 ISAR 成像的功能性能提出了越来越高的要求, 新的雷达成像方法还需要进一步的研究和挖掘: (1)随着雷达 ISAR 成像距离要求越来越远, 实测雷达回波数据的信噪比基本不会太高,因而 关于低信噪比下的目标平动补偿技术以及成像方 法的研究将是未来的研究热点;

(2)随着雷达功能越来越多样化,除了宽带的 成像模式,一般还兼顾目标的搜索、定位和跟踪功 能,得到的目标雷达回波一般是不连续或者稀疏 的,因此回波不连续条件下的目标平动补偿和高 分辨率成像技术也是 ISAR 成像未来的重要研究 方向之一;

(3)随着雷达观测的目标趋于多样化,单纯的 刚体目标假设已不能满足 ISAR 成像建模和数据 处理的要求,针对含有微动部件甚至多个不同运 动状态部件目标的成像算法研究也是国内外学者 比较关注的问题;

(4) ISAR 三维成像技术能够获得目标的三维 结构信息,拥有目标更为丰富的几何尺寸信息,有 利于目标的识别和分类,目前基于 InSAR 体制的 目标三维重构技术研究较多,而基于单传感器不 同角度下的 ISAR 图像,同时结合光学图像处理中 的目标三维重建技术,对 ISAR 观测目标进行重建 的研究则较少,这也将会是 ISAR 成像未来的重要 研究方向之一。

4 结束语

本文系统总结了 ISAR 成像技术近年来的发展概况,包括 ISAR 成像中的运动补偿技术,二维 成像中的超分辨率成像技术、大转角成像技术、多 目标成像技术和微动目标成像技术,提出了后续 技术发展的展望。作为现代先进雷达系统的重要 功能,ISAR 成像技术必将伴随着新的应用需求的 提出而不断探索前行。

参考文献:

- [1] 保铮,邢孟道,王彤. 雷达成像技术[M]. 北京:电子工 业出版社,2005.
- [2] CHEN C C, ANDREW H C. Target-Motion Induced Radar Imaging [J]. IEEE Trans on Aerospace and Electronic Systems, 1980, 16(1):2-14.
- [3] LIU L, ZHOU F, TAO M L, et al. Cross-Range Scaling Method of Inverse Synthetic Aperture Radar Imaging Based on Discrete Polynomial-Phase Trans-

form[J]. IET Radar, Sonar & Navigation, 2015, 9 (3):333-341.

- [4] WANG K, LUO L, BAO Z. Global Optimum Method for Motion Compensation in ISAR Imagery[C] // Radar Conference 1997, Edinburgh: IET, 1997: 233-235.
- [5] LI C, LIN G S, NI J L. Autofocusing of ISAR Images Based on Entropy Minimization [J]. IEEE Trans on Aerospace and Electronic Systems, 1999, 35 (4): 1240-1252.
- [6] PENG S, XU J, PENG Y, et al. Parametric Inverse Synthetic Aperture Radar Manoeuvring Target Motion Compensation Based on Particle Swarm Optimizer[J]. IET Radar, Sonar & Navigation, 2011, 5(3): 305-314.
- [7] 刘志凌,廖桂生,杨志伟.低信噪比条件下一种迭代加 权拟合的 ISAR 包络对齐方法[J].电子学报,2012, 40(4):799-804.
 LIU Zhiling, LIAO Guisheng, YANG Zhiwei. A Range Alignment Method with Iterative Weighted Least Squares Fitting for ISAR Under Low SNR[J]. Acta Electronica Sinica, 2012, 40(4):799-804. (in Chinese)
- [8] YE W, YEO T S, BAO Z. Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus
 [J]. IEEE Trans on Geoscience and Remote Sensing, 1999, 37(5):2487-2494.
- [9] 保铮,叶炜. ISAR 运动补偿聚焦方法的改进[J]. 电 子学报, 1996, 24(9):74-79.
 BAO Zheng, YE Wei. Improvements of Autofocusing Techniques for ISAR Motion Compensation[J]. Acta Electronica Sinica, 1996, 24(9):74-79. (in Chinese)
- [10] KRAGH T J, ALAA K A. Monotonic Iterative Algorithm for Minimum-Entropy Autofocus[C]//IEEE International Conference on Image Processing, Atlanta, GA:IEEE, 2006:645-648.
- [11] BERIZZI F, COSINI G. Autofocus of Inverse Synthetic Aperture Radar Images Using Contrast Optimization[J]. IEEE Trans on Aerospace and Electronic Systems, 1996, 32(3):1185-1191.
- [12] BRINKMAN W, THAYAPARAN T. Focusing Inverse Synthetic Aperture Radar Images with High-Order Motion Error Using the Adaptive Joint-Time-Frequency Algorithm Optimised with the Genetic Algorithm and the Particle Swarm Optimisation Algorithm; Comparison and Results[J]. IET Signal Pro-

cessing, 2010, 4(4):329-342.

- [13] MARTORELLA M, BERIZZI F, HAYWOOD B. Contrast Maximisation Based Technique for 2-D ISAR Autofocusing[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(4):253-262.
- [14] PARK S H, KIM H T, KIM K T. Stepped-Frequency ISAR Motion Compensation Using Particle Swarm Optimization with an Island Model[J]. Progress in Electromagnetics Research, 2008, 85(1): 25-37.
- [15] ZHANG L, SHENG J, DUAN J, et al. Translational Motion Compensation for ISAR Imaging Under Low SNR by Minimum Entropy[J]. EURASIP Journal on Advances in Signal Processing, 2013 (33):1-19.
- [16] LIU L, ZHOU F, TAO M L, et al. Adaptive Translational Motion Compensation Method for ISAR Imaging Under Low SNR Based on Particle Swarm Optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11):5146-5157.
- [17] CHEN V C, QIAN S. Joint Time-Frequency Transform for Radar Range Doppler Imaging [J]. IEEE Trans on Aerospace and Electronic Systems, 1998, 34(2):486-499.
- [18] 周万幸. ISAR 成像系统与技术发展综述[J]. 现代 雷达, 2012, 34(9):1-7.
- [19] BORISON S L, BOWLING S B, CUOMO K M. Super-Resolution Methods for Wideband Radar[J]. Lincoln Laboratory Journal, 1992, 5(3):441-461.
- [20] LI H J, FARHAT N H, SHEN Y S. A New Iterative Algorithm for Extrapolation of Data Available in Multiple Restricted Regions with Applications to Radar Imaging[J]. IEEE Trans on Antennas and Propagation, 1987, 35(5):581-588.
- [21] SUWA K, IWAMOTO M. A Two-Dimensional Bandwidth Extrapolation Technique for Polarimetric Synthetic Aperture Radar Images [J]. IEEE Trans on Geoscience and Remote Sensing, 2007, 45(1): 45-54.
- [22] MOORE T G, ZUERNDORFER B W, BURT E C. Enhanced Imagery Using Spectral-Estimation-Based Techniques[J]. Lincoln Laboratory Journal, 1997, 10(2):171-186.
- [23] XU X, NARAYANAN R M. Enhanced Resolution in SAR/ISAR Imaging Using Iterative Sidelobe Apo-

dization [J]. IEEE Trans on Image Processing, 2005, 14(4):537-547.

- [24] BOSE R, FREEDMAN A, STEINBERG B D. Sequence CLEAN: A Modified Deconvolution Technique for Microwave Images of Contiguous Targets
 [J]. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(1):89-97.
- [25] 白雪茹. 空天目标逆合成孔径雷达成像新方法研究 [D]. 西安:西安电子科技大学,2011.
- [26] ODENDAAL J, BARNARD E, PISTORIUS C. Two-Dimendional Superresolution Radar Imaging Using the MUSIC Algorithm[J]. IEEE Trans on Antennas and Propagation, 1994, 42 (10): 1386-1391.
- [27] MOGHADDAR A, OGAWA Y, WALTON E K. Estimating the Time-Delay and Frequency Decay Parameter of Scattering Components Using a Modified MUSIC Algorithm[J]. IEEE Trans on Antennas and Propagation, 1994, 42(10):1412-1418.
- [28] BARBAROSSA S, MARSILI L, MUNGARI G. SAR Super-Resolution Imaging by Signal Subspace Projection Techniques[C]//EUSAR, Konigswinter: IEEE, 1996:267-270.
- [29] RAO B D, HARI K V S. Performance Analysis of Root-Music[J]. IEEE Trans on Acoustics, Speech and Signal Processing, 1989, 37(12):1939-1949.
- [30] WANG Y, LING H. A Frequency-Aspect Extrapolation Algorithm for ISAR Image Simulation Based on Two-Dimensional ESPRIT[J]. IEEE Trans on Geoscience and Remote Sensing, 2000, 38(4):1743-1748.
- [31] DEGRAAF S.R. SAR Imaging via Modern 2-D Spectral Estimation Methods[J]. IEEE Trans on Image Processing, 1998, 7(5):729-761.
- [32] LI J, STOICA P. An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging [J]. IEEE Trans on Signal Process, 1996, 44(6):1469-1484.
- [33] STOICA P, JAKOBSSON A, LI J. Copon, APES and Matched-Filterbank Spectral Estimation[J]. Signal Processing, 1998, 66(1):45-59.
- [34] LOPEZ-DEKKER P, MALLORQUI J J. Coponand APES-based SAR Processing: Performance and Practical Considerations[J]. IEEE Trans on Geoscience and Remote Sensing, 2010, 48(5):2388-2402.
- [35] ZWEIG G. Super-Resolution Fourier Transforms by Optimization and ISAR Imaging[J]. IEE Proceed-

ings-Radar Sonar and Navigation, 2003, 150(4): 247-252.

- [36] ÇETIN M. Feature-Enhanced Synthetic Aperture Radar Imaging [D]. Boston: Boston University, 2001.
- [37] ZHANG L, XING M D, QIU C W, et al. Achieving Higher Resolution ISAR Imaging with Limited Pulses via Compressed Sensing[J]. IEEE Trans on Geoscience and Remote Sensing Letters, 2009, 6(3): 567-571.
- [38] PERRY R, DIPIETRO R, FANTE R. SAR Imaging of Moving Targets [J]. IEEE Trans on Aerospace and Electronic Systems, 1999, 35(1):188-200.
- [39] ZHU D, LI Y, ZHU Z. A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging[J]. IEEE Trans on Geoscience and Remote Sensing Letters, 2007, 4(1):18-22.
- [40] ZHOU F, BAI X, XING M, et al. Analysis of Wide-Angle Radar Imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(4):449-457.
- [41] BAI X R, ZHOU F, XING M D, et al. A Novel Method for Imaging of Group Targets Moving in a Formation[J]. IEEE Trans on Geoscience and Remote Sensing, 2012, 50(1):221-231.
- [42] XIAO D, SU F L, WU J W. Multi-Target ISAR Imaging Based on Image Segmentation and Short-Time Fourier Transform[C]//5th International Congress on Image and Signal Processing, Chongqing: IEEE, 2012;1832-1836.
- [43] 王洋,陈建文,刘中,等. 多运动目标 ISAR 成像方法 研究[J]. 宇航学报, 2005, 26(4):450-454.
- [44] LUO X Q, HE Q, LV G Z, et al. ISAR Imaging of Multiple Targets Based on Adaptive Gaussian Chirplet Decomposition[C] // CIE International Conference on Radar, Shanghai: IEEE, 2006:1012-1015.
- [45] FAN L H, PI Y M, HUANG S J. Multi-Target Imaging Processing Algorithms of ISAR Based on Time-Frequency Analysis [C] // CIE International Conference on Radar, Shanghai: IEEE, 2006;1-4.
- [46] 陈文驰. 一种适用于编队目标的 ISAR 成像处理实现方法[J]. 电子学报,2006,34(6):1119-1122.
 CHEN Wenchi. An Implementation Method of ISAR Imaging for Multiple Targets in Formation[J]. Acta Electronica Sinica, 2006, 34(6):1119-1122.(in Chinese)
- [47] LI Y, FU Y, LI X, et al. An ISAR Imaging Method for Multiple Moving Targets Based on Fractional

Fourier Transformation [C] // IEEE Radar Conference, Pasadena, CA:IEEE, 2009:1-6.

- [48] 苏鑫,张月辉,朱玉鹏,等. 基于时间-调频率分布的 多目标 ISAR 成像[J]. 雷达科学与技术, 2009, 7 (6):425-431.
 SU Xin, ZHANG Yuehui, ZHU Yupeng, et al. ISAR Imaging of Multiple Targets Using Time-Chirp Distribution [J]. Radar Science and Technology,
- [49] FU X J, GUO M G. ISAR Imaging for Multiple Targets Based on Randomized Hough Transform[C] // Congress on Image and Signal Processing, Sanya: IEEE, 2008:238-241.

2009, 7(6):425-431. (in Chinese)

- [50] ZHANG Y, ZHANG D, CHEN W, et al. ISAR Imaging of Multiple Moving Targets Based on RSP-WVD-Hough Transform[C] // 2008 Asia-Pacific Microwave Conference, Macau: IEEE, 2008:1-4.
- [51] PARK S H, KIM H T, KIM K T. Segmentation of ISAR Images of Targets Moving in Formation[J]. IEEE Trans on Geoscience and Remote Sensing, 2010, 48(4):2099-2108.
- [52] PARK S H, PARK K K, JUNG J H, et al. ISAR Imaging of Multiple Targets Using Edge Detection and Hough Transform [J]. Journal of Electromagnetic Waves and Applications, 2008, 22(2-3):365-373.
- [53] LIU L, ZHOU F, TAO M, et al. A Novel Method for Multi-Targets ISAR Imaging Based on Particle Swarm Optimization and Modified CLEAN Technique [J]. IEEE Sensors Journal, 2015, 16(1):97-108.
- [54] LI J, LING H. Application of Adaptive Chirplet Representation for ISAR Feature Extraction from Targets with Rotating Parts[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4):284-291.
- [55] STANKOVIC L, DJUROVIC I, THAYAPARAN T. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR Imaging[J]. IEEE Trans on Aerospace and Electronic Systems, 2006, 42(4): 1496-1506.
- [56] ZHANG Q, YEO T S, TAN H S, et al. Imaging of a Moving Target with Rotating Parts Based on the Hough Transform [J]. IEEE Trans on Geoscience and Remote Sensing, 2008, 46(1):291-299.
- [57] WANG Q, XING M, LU G, et al. High-Resolution Three-Dimensional Radar Imaging for Rapidly Spinning Targets[J]. IEEE Trans on Geoscience and Remote Sensing, 2008, 46(1):22-30. (下转第 266 页)