引用本文
  • 伍政华,郭锋,盛匀,顾宗山,姜文东,周啸宇. 基于雷达回波极化特征的电力线识别方法[J]. 雷达科学与技术, 2020, 18(1): 63-68.    [点击复制]
  • WU Zhenghua,GUO Feng,SHENG Yun,GU Zongshan,JIANG Wendong,ZHOU Xiaoyu. A Power Line Recognition Method Based on Polarization Characteristics of Radar Echoes[J]. Radar Science and Technology, 2020, 18(1): 63-68.   [点击复制]
【打印本页】 【HTML】 【下载PDF全文】 查看/发表评论 下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 21次   下载 0 本文二维码信息
码上扫一扫!
基于雷达回波极化特征的电力线识别方法
伍政华,郭锋,盛匀,顾宗山,姜文东,周啸宇
0
(1.中国电子科技集团公司第三十八研究所,安徽合肥 230088;2.孔径阵列与空间探测安徽省重点实验室,安徽合肥 230088;3.国网浙江省电力有限公司,浙江杭州 310007)
摘要:
现有的雷达对电力线的探测能力严重不足,这严重威胁低空飞行器如直升机的飞行安全。研究表明,线状物体对雷达垂直极化和水平极化信号响应强弱具有明显差异性,我们利用回波信号的极化特性建立起多维特征空间,并在该空间内完成电力线目标的感知、分类。某在研直升机低空防撞雷达的实测飞行数据表明,在利用极化信息所构建的特征空间内可有效区分电力线目标和虚假目标,准确率达到91%以上。该方法将有利于推动电力线障碍物预警雷达走向实用化。
关键词:  极化特征  电力线识别  多维特征空间  障碍物预警雷达
DOI:DOI:10.3969/j.issn.1672-2337.2020.01.011
基金项目:国家电网科技项目(No.5211TZ18000V)
A Power Line Recognition Method Based on Polarization Characteristics of Radar Echoes
WU Zhenghua,GUO Feng,SHENG Yun,GU Zongshan,JIANG Wendong,ZHOU Xiaoyu
(1.The 38th Research Institute of China Electronics Technology Group Corporation,Hefei 230088,China;2.Key Laboratory of Aperture Array and Space Application,Hefei 230088,China;3.State Grid Zhejiang Electric Power Co.〖KG-*4〗,Ltd,Hangzhou 310007,China)
Abstract:
The insufficient detection capability for power line obstacles of the existing radars cannot guarantee the lowaltitude flight safety of aircrafts. Based on the different responses between vertical and horizontal polarization signals played on linear objects,we build a multidimensional feature space by leveraging polarization characteristics to implement the power line classification. The measured flight data from a developing helicopter obstacle warning radar demonstrate the high recognition accuracy (above 91%) of distinguishing power line and false targets in the proposed feature space. The proposed power line recognition method can promote the practicality of obstacle warning radar.
Key words:  polarization characteristics  wire recognition  multidimensional feature space  obstacle warning radar