摘要: |
非平稳信号处理理论中高阶统计量方法被广泛应用于模式识别以提取稳健特征,但算法本身需要解决计算量大的问题,加上训练样本具有冗余性,因而限制了模式特征提取和分类速度。该文将计算高阶统计量转化为求相关系数,研究高阶相关在样本稀疏化以及基于径向基核的非线性分类方面的应用。首先采用最大匹配系数法确定相关阶数,然后对训练样本稀疏化,最后将高阶相关应用于SVM、KNR两种核非线性分类器进行分类识别,避免了高阶统计量的直接计算,减少了训练和分类时间。对手写数字和8种飞机的仿真数据进行实验,结果表明该方法具有较好的稀疏效果和识别效果。 |
关键词: 模式识别 高阶相关 稀疏化 核非线性分类器 |
DOI: |
分类号: |
基金项目:教育部科技研究重点项目(No.105150);ATR国防重点实验室基金项目(No.51483010305DZ0207) |
|
|
|
|
Abstract: |
|
Key words: |