摘要: |
惯性导航系统(INS)的初始对准误差模型通常为非线性的,对于估计惯导误差普遍采用的是扩展卡尔曼滤波算法(EKF),该方法是在一阶泰勒展开的基础上近似得到的,因而误差较大。粒子滤波算法一种新颖的非线性滤波算法,它较传统的EKF算法具有稳定性好,适用范围广的优点。该文首先介绍了作为粒子滤波理论基础的递推贝叶斯估计的基本概念,说明了重要性函数对于粒子滤波器的设计是至关重要的。随后,给出了一种将不敏卡尔曼滤波(UKF)算法作为重要性函数的UPF算法,并提出将其用于静基座条件下的惯导系统非线性初始对准,通过计算机仿真对比了UPF和EKF的估计效果。仿真结果表明,UPF算法较传统的EKF算法对准时间更快,... |
关键词: 惯性导航 初始对准 重要性函数 不敏粒子滤波 |
DOI: |
分类号: |
基金项目: |
|
|
|
|
Abstract: |
|
Key words: |