摘要: |
非线性滤波问题通常会面临过程方程和量测方程的双重非线性,利用传统的滤波算法进行处理时,离散化和线性化过程是导致滤波性能降低的根本原因。提出了一种基于Runge-Kutta积分的不敏Kalman滤波(UKF)算法,该算法能够直观、方便地对运动模型为连续非线性常微分方程组的跟踪问题进行处理,避免了复杂的Jacobi矩阵运算和离散化过程,使预测模型更加精确。以弹道目标跟踪为例进行了仿真实验,通过与传统UKF算法和扩展Kalman滤波(EKF)算法比较,结果表明该算法具有更好的性能。 |
关键词: 跟踪 不敏Kalman滤波(UKF) Runge-Kutta积分 扩展Kalman滤波器(EKF) |
DOI: |
分类号: |
基金项目: |
|
|
|
|
Abstract: |
|
Key words: |