摘要: |
针对空间目标的RCS特征识别的问题,提出了基于粒子群算法(PSO)训练的时延神经网络(TDNN)识别方法。首先研究了时延神经网络的结构模型和梯度下降训练法,由于梯度下降训练法存在收敛速度缓慢、容易陷入局部极小值等缺点,提出了基于粒子群算法的训练方法,将时延神经网络的训练过程转化为群体随机优化问题。最后,提取两类空间目标的RCS实测数据小波特征,利用各类神经网络进行识别比较发现:基于粒子群算法的时延神经网络(PSO-TDNN)具有分类能力强,收敛速度快等优点。 |
关键词: 空间目标识别 时延神经网络 粒子群算法 RCS小波特征 |
DOI: |
分类号: |
基金项目:国家863项目(No.2009AA8080501) |
|
|
|
|
Abstract: |
|
Key words: |