摘要: |
针对三维弹道目标,给出了一种有效的基于粒子滤波的跟踪算法。这种算法以标准的粒子滤波算法为基础,根据贝叶斯原理利用局部线性化技术获得最佳近似的重要性密度函数以避免粒子退化现象,并且利用Metropolis-Hastings(MH)采样构造的马尔科夫链得到更加符合目标分布的样本,从而最小化重采样后的粒子枯竭问题。此外,这里采用Kullback-Leibler距离(KLD)指标对不同粒子滤波算法的性能进行评估。仿真结果表明,该三维弹道目标跟踪算法粒子群与参考粒子群(近似真实目标概率分布的粒子群)之间的KLD比标准粒子滤波与参考粒子群之间的KLD更小,因此,能获得比标准粒子滤波算法更好的跟踪效果。 |
关键词: 弹道目标跟踪 粒子滤波算法 Kullback-Leibler距离 性能评估 |
DOI: |
分类号: |
基金项目:国家自然科学基金(No.61101171); 中央高校基本业务费资助项目(No.ZYGX2013J021) |
|
|
|
|
Abstract: |
|
Key words: |