引用本文: | 李擎宇, 陈建文, 鲍拯. 认知天波雷达环境感知波形设计算法研究[J]. 雷达科学与技术, 2020, 18(3): 267-273.[点击复制] |
LI Qingyu, CHEN Jianwen, BAO Zheng. Waveform Design of Environment Sensing for Cognitive Skywave Radar[J]. Radar Science and Technology, 2020, 18(3): 267-273.[点击复制] |
|
摘要: |
基于目标和环境先验信息优化设计发射波形可以提高雷达目标回波信干噪比(SINR)。首先给出了认知天波超视距雷达(CSWOTHR)发射波形自适应设计机制,完善了系统架构设计,为减弱同频干扰对目标检测的影响,在基于知识辅助自适应环境感知波形 (KB-AESBW) 设计算法的基础上,提出了一种改进的基于灰色马尔科夫组合模型的自适应环境感知波形(GM-AESBW)设计算法。通过GM-AESBW算法,CSWOTHR实现了对环境感知一次、预测多次的功能,具有更好的环境匹配能力,且鲁棒性强,降低了系统对外部环境的依赖。理论分析与仿真实验验证了GM-AESBW算法的有效性。 |
关键词: 认知天波超视距雷达 波形设计 环境感知 灰色马尔科夫 |
DOI:DOI:10.3969/j.issn.1672-2337.2020.03.006 |
分类号:TN958.93 |
基金项目:国家自然科学基金 (No.61471391) |
|
Waveform Design of Environment Sensing for Cognitive Skywave Radar |
LI Qingyu, CHEN Jianwen, BAO Zheng
|
Air Force Early Warning Academy, Wuhan 430019, China
|
Abstract: |
Optimizing the design of the transmit waveform based on the target and environmental prior information can improve the SINR of target echo. Firstly, the adaptive design mechanism of cognitive sky-wave over-the-horizon radar (CSWOTHR) transmit waveform is given and the system architecture design is improved. Based on the algorithm for waveform design of knowledge-aided and adaptive environment sensing(KB-AESBW), an improved algorithm for waveform design of adaptive environment sensing based on grey-Markov model(GM-AESBW) is proposed. Through the GM-AESBW algorithm, the CSWOHTR realizes the function of perceiving the environment once and predicting multiple times, has better environment matching ability and stronger robustness, and reduces the system’s dependence on the external environment. Theoretical ana-lysis and simulation experiments verify the effectiveness of the proposed GM-AESBW algorithm. |
Key words: cognitive sky-wave over-the-horizon radar waveform design environment sensing grey-Markov |