• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:卢廷, 付耀文, 张文鹏, 杨威. 基于Deeplabv3网络的飞机目标微动信号分离[J]. 雷达科学与技术, 2020, 18(3): 327-334.[点击复制]
LU Ting,FU Yaowen, ZHANG Wenpeng, YANG Wei. Aircraft Target Micro-Motion Signal Separation Based on Deeplabv3 Network[J]. Radar Science and Technology, 2020, 18(3): 327-334.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5900次   下载 881次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于Deeplabv3网络的飞机目标微动信号分离
卢廷, 付耀文, 张文鹏, 杨威
国防科技大学电子科学学院, 湖南长沙410000
摘要:
针对空中飞机目标的微多普勒效应提出一种基于时频图与深度神经网络分离直升机、螺旋桨和喷气式三类飞机旋转部件和机身的方法。本文从飞机目标时频图像素差异着手,根据深度学习语义分割网络提取飞机目标时频掩膜图,将掩膜图与飞机目标多分量时频矩阵进行乘法拟合,实现三类飞机目标多分量信号分离。通过建立的仿真数据集进行多组实验,结果表明对飞机目标多分量信号,深度学习语义分割网络提取时频掩膜的方法能够很好地分离机身和旋转部件信号,并起到抑制杂波的效果。
关键词:  飞机目标  微多普勒效应  深度神经网络  时频图  信号分离
DOI:DOI:10.3969/j.issn.1672-2337.2020.03.015
分类号:TN957
基金项目:国家自然科学基金(No.61871384); 湖南省自然科学基金(No.2017JJ3367); 上海航天科技基金(No.SAST2017-048)
Aircraft Target Micro-Motion Signal Separation Based on Deeplabv3 Network
LU Ting,FU Yaowen, ZHANG Wenpeng, YANG Wei
College of Electronic Science, National University of Defense Technology, Changsha 410000, China
Abstract:
Aiming at the micro-Doppler effect of airborne aircraft targets, a method based on time-frequency diagram and deep neural network to separate rotating parts and airframes of helicopters, propellers and jets is proposed. This paper starts from the difference of the pixel value of the aircraft target time-frequency diagram, extracts the aircraft target time-frequency mask map according to the deep learning semantic segmentation network, and multiplies the mask map with the multi-component time-frequency matrix of the aircraft target to realize the multi-component signal separation of the three types of aircraft targets. Through the established simulation data set, multiple sets of experiments are carried out. The results show that the method of extracting the time-frequency mask for the aircraft target multi-component signal and the deep learning semantic segmentation network can separate the signals of the fuselage and rotating components. Through the established simulation data set, multiple sets of experiments are carried out. The results show that the method of extracting the time-frequency mask for the aircraft target multi-component signal and the deep learning semantic segmentation network can separate the signals of the fuselage and rotating components, and has the effect of suppressing clutter.
Key words:  aircraft targets  micro-Doppler effect  deep neural network  time-frequency image  signal separation

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司