• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:王永坤, 郑世友, 邓晓波. 基于极限学习机的目标智能威胁感知技术[J]. 雷达科学与技术, 2020, 18(4): 387-393.[点击复制]
WANG Yongkun, ZHENG Shiyou, DENG Xiaobo. Intelligent Threat Perception of Aerial Target Based on Extreme Learning Machine[J]. Radar Science and Technology, 2020, 18(4): 387-393.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6151次   下载 1379次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于极限学习机的目标智能威胁感知技术
王永坤, 郑世友, 邓晓波
1. 中国航空工业集团公司雷华电子技术研究所, 江苏无锡 214063;2. 航空电子系统射频综合仿真航空科技重点实验室, 江苏无锡 214063
摘要:
空中目标威胁感知是智能空战的关键技术之一。针对空中目标威胁评估问题,提出一种基于极限学习机的目标威胁智能感知策略。该方法首先提取目标威胁评估的高权重态势因子,并采用隶属度函数进行归一化数值解译;然后,借助专家知识采用极限学习机理论对威胁感知的输入输出数据进行建模,构建智能感知推理模型;最后,建立基于极限学习机的目标威胁智能感知流程。仿真结果表明,该算法具有较高的威胁感知精度以及较好的算法实时性。
关键词:  空中目标  威胁感知  态势因子  隶属度函数  极限学习机
DOI:DOI:10.3969/j.issn.1672-2337.2020.04.006
分类号:TN957;TP391.9
基金项目:中国博士后科学基金面上项目(No.2019M651993); 装备预研联合基金(No.614B05070202)
Intelligent Threat Perception of Aerial Target Based on Extreme Learning Machine
WANG Yongkun, ZHENG Shiyou, DENG Xiaobo
1. AVIC Leihua Electronic Technology Research Institute, Wuxi 214063, China;2. Aviation Key Laboratory of Science and Technology on AISSS, Wuxi 214063, China
Abstract:
Threat perception of aerial target is one of the key technologies in intelligent air combat. Strategy based extreme learning machine (ELM) is proposed to cope with the threat assessment problem. In the proposed method, the high weighting situation factors impacting on target threat are selected firstly, and then normalized and quantized via membership functions. The mapping relationship between the situation factors and target threat is modeled based on ELM. Finally, the threat perception process of target is established. The simulation results show the proposed algorithm can obtain high perception accuracy and realize online learning.
Key words:  aerial target  threat perception  situational factor  membership function  extreme learning machine(ELM)

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司