摘要: |
探月雷达对于认识月球和开发月球资源具有重要意义,我国发射的嫦娥五号探测器已于2020年12月1日在月球表面着陆,圆满完成了嫦娥三期工程“采样返回”任务。根据嫦娥五号的任务安排,月壤结构仪在月表采集的雷达数据传回地表后,需要准时对月壤钻头下方2m深度范围内的月壤结构和可能存在的月岩进行高分辨率成像,为后续月壤钻取任务提供关键的信息支持。本文研究了复杂电磁环境下嫦娥五号探月数据的杂波去除方法,通过速度谱分析法反演月壤分层结构的介电常数,并开发了基于矢量格林函数的频率域快速逆时偏移成像算法。仿真和地面验证试验结果表明:利用速度谱分析方法获取的月壤分层结构介电常数和厚度误差在12%以内,可为逆时偏移成像提供精准的初始模型;研发的频率域逆时偏移算法,可在快速获取月壤中月岩的高分辨率成像结果,为后续月壤采样任务提供准确的信息支持。研究成果为嫦娥五号月壤钻取任务的顺利实施提供了支撑,并将有助于嫦娥五号探月雷达数据的精细化处理,从而深化月壤起源和演化机理的认识。 |
关键词: 探月雷达 嫦娥五号 逆时偏移 数据处理 |
DOI:10.3969/j.issn.1672-2337.2021.01.003 |
分类号:TN959.74;P184.5 |
基金项目:国家自然科学基金(No.51978182) |
|
Data Processing Methods for Chang’E-5 Lunar Penetrating Radar |
LIU Hai,YUE Yunpeng,HAN Feng,MENG Xu,ZHOU Bin,FANG Guangyou
|
1. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China;2. School of Electronic Science and Engineering, Xiamen University, Xiamen 361005,China;3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094,China
|
Abstract: |
Lunar penetrating radar (LPR) is an important tool for understanding the origin of the moon and exploiting its resources. Chang'E-5 probe landed on the lunar surface on December 1, 2020, and has successfully completed the “sampling and return” mission of the third phase of the Chang’E project of China. According to the mission schedule of Chang'E-5, it is required to produce a high resolution image of the lunar regolith structure and possible rocks within 2m depth beneath the soil driller equipped on the Chang'E-5 lander after acquiring the LPR data. In this paper, the clutter removal method for Chang'E-5 LPR data in complex electromagnetic environment is studied. Then, the dielectric profile of the layered lunar soil structure is analyzed by velocity spectrum analysis method. Thirdly, a frequency domain reverse time migration (RTM) algorithm based on Green's function is developed for obtain the high resolution image of the subsurface lunar structure and the possible rock distribution. The numerical results show that the estimated dielectric permittivity and layer thickness of the layered lunar soil structure have errors less than 12%, which can provide a good initial model for the RTM imaging. The numerical and ground test experiment results show that the developed RTM algorithm can yield a high resolution imaging of a marble rock buried in a 7*3*2.5m3 pit full of volcanic ash, therefore providing critical information for the subsequent lunar soil sampling task. The data processing methods proposed in this paper have aided the accomplishment of the scientific aims of Chang'E-5 exploration mission, and are also useful for further processing the LPR data and understanding the origin and evolution of the lunar regolith. |
Key words: lunar penetrating radar (LPR) Chang'E-5 reverse time migration (RTM) data processing |