引用本文: | 屈乐乐,张丁元,杨天虹,张丽丽,孙延鹏. 基于双流特征融合的FMCW雷达人体连续动作识别[J]. 雷达科学与技术, 2022, 20(5): 565-572.[点击复制] |
QU Lele, ZHANG Dingyuan, YANG Tianhong, ZHANG Lili, SUN Yanpeng. Continuous Human Motion Recognition Method for FMCW Radar Based on Two-Stream Feature Fusion[J]. Radar Science and Technology, 2022, 20(5): 565-572.[点击复制] |
|
摘要: |
本文提出了一种基于双流特征融合的FMCW雷达人体连续动作识别方法。首先对人体动作雷达回波信号进行预处理得到距离时间域图与微多普勒时频谱图,之后分别对两个不同维度的图像进行主成分分析提取对应特征并选取相同时间段的主成分分析结果进行融合得到双流融合特征,最后将双流融合特征输入到Bi-LSTM网络中训练与测试,网络对每个时间段的输入特征产生与之对应的动作类别输出从而实现连续人体动作识别。实验结果表明,当采用双流融合特征作为Bi-LSTM网络的输入时平均识别准确率要高于只采用距离时间特征或微多普勒特征作为网络输入时的平均识别准确率。 |
关键词: 特征提取 双向长短期记忆网络 连续人体动作识别 特征融合 |
DOI:DOI:10.3969/j.issn.1672-2337.2022.05.013 |
分类号:TN957.51 |
基金项目:国家自然科学基金(No.61671310); 航空科学基金(No.2019ZC054004); 辽宁省兴辽英才计划项目基金(No.XLYC1907134); 辽宁省百千万人才工程项目基金(No.2018B21); 辽宁省教育厅科学研究项目基金(No.LJKZ0172, JYT2020015) |
|
Continuous Human Motion Recognition Method for FMCW Radar Based on Two-Stream Feature Fusion |
QU Lele, ZHANG Dingyuan, YANG Tianhong, ZHANG Lili, SUN Yanpeng
|
College of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
|
Abstract: |
A continuous human motion recognition method for FMCW radar based on two-stream fusion feature is proposed in this paper. Firstly, the range-time image and the micro-Doppler spectrogram image are obtained by preprocessing the radar echo data. And then the two-stream fused features are obtained from range-time image and micro-Doppler spectrogram image by the principal component analysis (PCA) method and the extracted features are fused in the same period. Finally, the two-stream fused features are put into the Bi-LSTM network for training and testing. And the network provides the corresponding action category and implements the continuous human motion recognition. The experimental results show that the average recognition accuracy of the proposed method using two-stream fused features as the input of Bi-LSTM network is higher than that of the network only using range-time feature or the micro-Doppler feature. |
Key words: feature extraction bidirectional long short-term memory (Bi-LSTM) continuous human motion recognition feature fusion |