• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:施赛楠, 姜 丽, 李东宸, 吴旭姿. 基于双重虚警控制XGBoost的海面小目标检测[J]. 雷达科学与技术, 2023, 21(3): 314-323.[点击复制]
SHI Sainan, JIANG Li, LI Dongchen, WU Xuzi. Sea⁃Surface Small Target Detection Based on XGBoost with Dual False Alarm Control[J]. Radar Science and Technology, 2023, 21(3): 314-323.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 5056次   下载 525次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于双重虚警控制XGBoost的海面小目标检测
施赛楠, 姜 丽, 李东宸, 吴旭姿
1. 南京信息工程大学电子与信息工程学院, 江苏南京 210044;2. 中国船舶工业系统工程研究院, 北京 100094;3. 江苏开放大学信息工程学院, 江苏南京 210036
摘要:
为了提升雷达对海面小目标的探测能力,本文提出一种基于双重虚警控制的极限梯度提升(eXtreme Gradient Boosting, XGBoost)的目标检测方法,解决高维特征空间中分类器设计难的问题。首先,从时域、频域、时频域中挖掘了海杂波和含目标回波的精细化差异,并将这些差异凝聚为7个特性,进而构建高维特征空间。然后,发展了一种双重虚警控制的两分类器。在第一重中,重新定义XGBoost的损失函数,通过迭代调整两类错误率的惩罚因子,实现结构层面上的粗虚警控制。在第二重中,将分类概率作为统计量,实现参数层面上的精虚警控制。最后,经实测数据验证,所提出的检测器能精准控制虚警且具备稳健的探测能力。
关键词:  海杂波  目标检测  特征提取  虚警控制  极限梯度提升树
DOI:DOI:10.3969/j.issn.1672-2337.2023.03.010
分类号:TN911.23
基金项目:国家自然科学基金(No.61901224); 江苏省高等学校基础科学(自然科学)研究项目(No.21KJB510036)
Sea⁃Surface Small Target Detection Based on XGBoost with Dual False Alarm Control
SHI Sainan, JIANG Li, LI Dongchen, WU Xuzi
1. School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. System Engineering Research Institute, China State Shipbuilding Corporation, Beijing 100094, China;3. School of Information Engineering, Jiangsu Open University, Nanjing 210036, China
Abstract:
Due to the difficulty to design high?dimensional classifier, a detection method using extreme gradient boosting (XGBoost) with dual false alarm control is proposed to improve the detection performance of marine radars for small targets on the sea surface. Firstly, the refined differences between the sea clutter and the returns containing target are extracted from time domain, frequency domain and time?frequency domain. These differences are condensed into seven features and then the high?dimensional feature space is constructed. Secondly, a binary classifier with dual false alarm control is developed. In the first part, the loss function of XGBoost is redefined to realize the rough false alarm control at the structural level by adjusting iteratively the penalty factor of the two types of error rate. In the second part, the classification probability is used as test statistics to obtain the precise false alarm control at the parameter level. Finally, it is verified by measured data that the proposed detector can accurately control false alarm and has robust detection capability.
Key words:  sea clutter  target detection  feature extraction  false alarm control  extreme gradient boosting

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司