引用本文: | 夏 熙,徐小帆,张海兵,陈文俊. 高功率密度高动态性能毫米波固态发射组件研究[J]. 雷达科学与技术, 2024, 22(1): 111-118.[点击复制] |
XIA Xi, XU Xiaofan, ZHANG Haibing, CHEN Wenjun. Research on Millimeter Wave Solid⁃State Transmitter Modules with High Power Density and High Dynamic Performance[J]. Radar Science and Technology, 2024, 22(1): 111-118.[点击复制] |
|
摘要: |
随着雷达发射技术的发展,发射组件小型化、高功率密度化、高动态性能化成为研究的热点与难点。为提升发射组件的功率密度,基于氮化镓(GaN)器件与波导空间合成技术提出一种堆叠式发射组件设计方案,实现波导功分合成网络与组件盒体的一体化集成,同时将多路功放模块堆叠至功分合成网络之上实现组件的高功率密度小型化设计;为提升发射组件的效率,优化其脉冲负载条件下的动态性能,供电单元采用分布式结构,以“半桥LLC+双同步Buck”为主功率拓扑,半桥LLC与同步整流技术的应用实现组件成本的降低与效率的提升,创新性引入状态轨迹控制策略(OTC),在负载突变时,通过采集半桥LLC谐振槽电感电流、谐振电容电压与输出电压实现主拓扑的变频控制,从而优化发射组件的动态性能。以Ka波段200 W固态发射组件为例开展设计,实测结果表明,组件峰值功率达到213 W,平坦度达到±0.2 dB,输出杂散≤?59 dBc,在某频段组件综合效率最大为19.9%,提升了约2.1%,功率密度相比于同波段组件提升了17.98%,达到1 458 W/in3,组件脉冲负载切换动态调整时间提升了19.2%左右,具有明显的优势。 |
关键词: 高功率密度组件 动态性能优化 固态发射技术 同步整流技术 状态轨迹控制策略 |
DOI:DOI:10.3969/j.issn.1672-2337.2024.01.015 |
分类号:TN925;TN832 |
基金项目:中国船舶集团有限公司第七二四研究所自立科技创新项目(No.FS21822) |
|
Research on Millimeter Wave Solid⁃State Transmitter Modules with High Power Density and High Dynamic Performance |
XIA Xi, XU Xiaofan, ZHANG Haibing, CHEN Wenjun
|
No.724 Research Institute of CSSC, Nanjing 211153, China
|
Abstract: |
With the development of radar transmission technology, the miniaturization, high power density, and high dynamic performance of transmitting modules have become the research focus. To improve the power density of the transmitting module, a stacked transmitting module’s design scheme based on gallium nitride(GaN) and waveguide spatial power?combining techniques is proposed, which achieves the integration of waveguide spatial power dividing/combining network and module’s box body. At the same time, multiple power amplifier modules are stacked on the top of the waveguide spatial power dividing/combining network to achieve high power density and miniaturization design of the module. In order to improve the efficiency of the transmitting module and optimize its dynamic performance under pulse load conditions, the power supply unit adopts a distributed structure, with “a half?bridge LLC+ dual?synchronous Buck” as the main power topology. The application of the half?bridge LLC and synchronous rectification technology reduces cost and improves efficiency. Innovatively, a state trajectory control strategy (OTC) is introduced to collect the inductance current, the resonant capacitor voltage and output voltage of the half?bridge LLC resonant slot during load mutation to achieve frequency conversion control of the main topology, thereby optimizing the dynamic performance of the transmitting module. Taking the Ka band 200 W solid?state transmitting module as an example, the measured results show that the peak power of the module reaches 213 W, the flatness reaches ±0.2 dB, and the output stray is ≤?59 dBc. In a certain frequency band, the maximum comprehensive efficiency of the module is 19.9%, increasing by about 2.1%. Compared with the modules in the same band, the power density increases by 17.98%, reaching 1 458 W/in3. The dynamic adjustment time of the module pulse load switching increases by about 19.2%, which has obvious advantages. |
Key words: high power density module dynamic performance optimization solid⁃state transmission technology synchronous rectification technology state trajectory control strategy |