引用本文: | 方国俊, 王国丽, 邓志安. 基于改进带宽自适应ACMD的信号分离方法[J]. 雷达科学与技术, 2024, 22(3): 265-274.[点击复制] |
FANG Guojun, WANG Guoli, DENG Zhian. Signal Separation Method Based on Improved Bandwidth ACMD[J]. Radar Science and Technology, 2024, 22(3): 265-274.[点击复制] |
|
摘要: |
针对复杂电磁环境下出现多个辐射源信号混叠造成的多分量信号分离问题,提出了基于改进带宽自适应线性调频模态分解(ACMD)的信号分离方法。该方法利用频谱集中性指标对各信号分量的瞬时频率进行估计,将估计的瞬时频率值作为改进算法的预设频率;利用递归框架和改进带宽自适应更新方法对各信号分量进行循环迭代;直到剩余信号能量小于阈值,完成所有信号分离。仿真实验表明,该方法能够在复杂电磁环境下分离出多分量信号,相比较已有算法对紧邻信号具有更好的分离性能和抗噪声性能。 |
关键词: 信号分离 复杂电磁环境 带宽自适应ACMD 频谱集中性指标 |
DOI:DOI:10.3969/j.issn.1672-2337.2024.03.004 |
分类号:TN971 |
基金项目:国家自然科学基金(No.61971155);中央高校基本科研业务费项目(No.3072022TS0802) |
|
Signal Separation Method Based on Improved Bandwidth ACMD |
FANG Guojun, WANG Guoli, DENG Zhian
|
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;2. Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology,
Harbin Engineering University, Harbin 150001, China
|
Abstract: |
Aiming at the problem of separating multi?component signals caused by the overlap of multiple radiation sources in complex electromagnetic environment, a signal separation method based on improved bandwidth adaptive chirp mode decomposition (ACMD) is proposed. The spectral concentration index is used to estimate the instantaneous frequency of each signal component, and the estimated instantaneous frequency is used as the preset frequency for the improved algorithm. The recursive framework and the improved bandwidth adaptive update method are used to iterate each signal component. Until the remaining signal energy is less than the threshold, all signal separation is completed. Simulation experiments show that this method can separate multi?component signals in complex electromagnetic environment, and has better separation performance and noise resistance than existing algorithms, especially for adjacent signals. |
Key words: signal separation complex electromagnetic environment bandwidth ACMD spectral concentration index |