• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:颜雯丽, 丁 昊, 刘宁波, 王中训. 基于线性判别分析的海上目标检测算法[J]. 雷达科学与技术, 2024, 22(6): 681-688.[点击复制]
YAN Wenli, DING Hao, LIU Ningbo, WANG Zhongxun. Detection Algorithm of Maritime Target Based on Linear Discriminant Analysis[J]. Radar Science and Technology, 2024, 22(6): 681-688.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 997次   下载 202次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于线性判别分析的海上目标检测算法
颜雯丽, 丁 昊, 刘宁波, 王中训
1. 烟台大学物理与电子信息学院, 山东烟台 264005;2. 海军航空大学, 山东烟台 264001
摘要:
传统单一特征检测方法的检测性能较差,通过多特征联合检测方法可以有效提高检测性能。采用多特征联合检测方法在提高性能之外,也会造成计算量增加以及信息冗余。对此提出了一种基于线性判别分析的海上目标检测方法,将单一特征映射到二维特征空间中,形成两组特征组合,RDPH?RVE特征组合和RPH?TEM特征组合,并在二维特征组合基础上进行降维处理。通过将单一特征映射到二维空间中,降低海杂波与目标重叠区域,再通过线性判别分析方法,将雷达回波数据在区分性更好的方向进行投影,在保留信息的同时减少了计算量。
关键词:  特征提取  小目标检测  海杂波  多特征联合
DOI:DOI:10.3969/j.issn.1672-2337.2024.06.011
分类号:TN951;TN957.51
基金项目:国家自然科学基金资助项目(No.62388102,62101583)
Detection Algorithm of Maritime Target Based on Linear Discriminant Analysis
YAN Wenli, DING Hao, LIU Ningbo, WANG Zhongxun
1. School of Physics and Electronic Information, Yantai University, Yantai 264005, China;2. Naval Aviation University, Yantai 264001, China
Abstract:
The detection performance of the traditional single feature method is poor, and the detection performance can be effectively improved by multi?feature joint detection method. However, the use of multi?feature joint methods will not only improve the detection performance, but also lead to an increase in calculation and information redundancy. In this paper, a detection method for floating small targets based on linear discriminant analysis is proposed. The single feature is mapped to a two?dimensional feature space to form two groups of feature combinations, which named RDPH?RVE and RPH?TEM. Dimension reduction is carried out on the basis of two?dimensional feature combination. By mapping a single feature into a two?dimensional space, the overlapping area between sea clutter and the target is reduced. Then through the linear discriminant analysis method, the radar data is projected in a more distinguishable direction, which reduces the amount of calculation while retaining the information.
Key words:  feature extraction  small target detection  sea clutter  multi⁃feature combination

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司