• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:李坤坤, 程 婕, 张智香, 胡 爽, 吴力华. 基于随机矩阵建模的低空飞行器跟踪方法[J]. 雷达科学与技术, 2025, 23(1): 67-74.[点击复制]
LI Kunkun, CHENG Jie, ZHANG Zhixiang, HU Shuang, WU Lihua. Low⁃Altitude Aircraft Tracking Method Based on Random Matrix Modeling[J]. Radar Science and Technology, 2025, 23(1): 67-74.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 238次   下载 73次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于随机矩阵建模的低空飞行器跟踪方法
李坤坤, 程 婕, 张智香, 胡 爽, 吴力华
1. 西北核技术研究所, 陕西西安 710024;2. 西安工程大学电子信息学院, 陕西西安 710048
摘要:
近年来,服务于环境监测、应急救援等任务的低空飞行器使用频次日益上升,在创造良好社会经济效益的同时也带来空域监管压力。针对空管高分辨雷达跟踪识别具有扩展形态的低空飞行器,本文提出一种基于随机矩阵建模的飞行器跟踪及其外形参数估计方法。首先,根据高分辨雷达探测该类飞行器时雷达单帧多量测及飞行器主体外形近似为椭圆体的特点,引入可描述椭圆(体)的对称正定随机矩阵建模其扩展外形;其次,基于高斯逆威沙特分布滤波估计飞行器的运动状态、扩展外形矩阵;最后,对扩展外形矩阵估计结果进行特征值分解,使用特征值平方根及最大特征值对应的特征向量分别估计飞行器的半轴尺寸及主轴方向,从而实现飞行器扩展外形参数的在线估计。仿真实验结果表明,本文滤波方法具有良好的低空飞行器跟踪性能,可为识别具有扩展形态的低空飞行器提供信息支撑。
关键词:  低空飞行器  运动状态  扩展外形  随机矩阵  特征值分解
DOI:DOI:10.3969/j.issn.1672-2337.2025.01.007
分类号:TN959.1
基金项目:国家自然科学基金面上项目(No. 12472359)
Low⁃Altitude Aircraft Tracking Method Based on Random Matrix Modeling
LI Kunkun, CHENG Jie, ZHANG Zhixiang, HU Shuang, WU Lihua
1. Northwest Institute of Nuclear Technology, Xi’an 710024, China;2. School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
Abstract:
In recent years, the frequency of low?altitude aircraft employment has been increasing for tasks like environmental surveys and emergency rescues. While creating well social and economic benefits, it also brings pressure of airspace supervision. To address the tracking and identification of low?altitude aircraft with extension shape using high?resolution airspace supervision radars, a random matrix modeling?based method on the aircraft tracking and its extension shape parameters estimation is proposed in this paper. Firstly, with the characteristics that the high?resolution radar gets multiple measurements per scan when detecting the extended aircraft whose extension shape can be approximate to ellipsoid, its extension shape is modeled by introducing a symmetric positive definite random matrix which can characterize ellipsoid. Then, based on Gaussian Inverse Wishart filtering, the estimates of the aircraft’s kinematic state and extension shape matrix can be achieved. Finally, the eigenvalue decomposition on the estimated extension shape matrix is performed. The square roots of the resulting eigenvalues and the eigenvector corresponding to the maximum eigenvalue are respectively viewed as the aircraft’s half?axis sizes and main?axis direction. Thus, the online estimation of the aircraft’s extension shape parameters is realized. The simulation experiment results show that the method has well performance on tracking low?altitude aircraft, enabling it to provide information support for identifying low?altitude aircraft with extension shape.
Key words:  low⁃altitude aircraft  kinematic state  extension shape  random matrix  eigenvalue decomposition

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司