• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:鲍子威, 吴影生, 房景仕. 基于深度卷积神经网络的雷达伺服转台消隙策略[J]. 雷达科学与技术, 2025, 23(1): 101-108.[点击复制]
BAO Ziwei, WU Yingsheng, FANG Jingshi. Anti⁃Backlash Strategy of Radar Servo Turntable Based on Deep Convolutional Neural Networks[J]. Radar Science and Technology, 2025, 23(1): 101-108.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 183次   下载 63次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于深度卷积神经网络的雷达伺服转台消隙策略
鲍子威, 吴影生, 房景仕
中国电子科技集团公司第三十八研究所, 安徽合肥 230088
摘要:
精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐渐变差,影响雷达跟踪精度。针对此缺陷,本文提出一种基于深度卷积神经网络(DCNN)的精密雷达伺服转台消隙策略,通过采集位置闭环传动轴振动数据,利用连续小波变换(CWT)得到时频图,作为DCNN训练输入,训练后得到识别模型,最后根据模型识别出伺服转台传动机构磨损程度来调整双电机消隙控制的偏置电流和拐点电流,通过对比实验验证了调整后消隙效果优于传统消隙方式,极大提高装备运行的可靠性,降低雷达伺服转台的维护成本。
关键词:  深度卷积神经网络  精密雷达伺服转台  双电机消隙  可靠性
DOI:DOI:10.3969/j.issn.1672-2337.2025.01.011
分类号:TN957
基金项目:安徽省重点研究与开发计划(No.2022b13020003)
Anti⁃Backlash Strategy of Radar Servo Turntable Based on Deep Convolutional Neural Networks
BAO Ziwei, WU Yingsheng, FANG Jingshi
The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
Abstract:
The transmission mechanism of the precision radar servo turntable will gradually wear with continuous equipment operation, resulting in an increase in backlash. While the traditional dual motor anti?backlash control strategy can eliminate the backlash, it depends on the control experience and initial gear backlash configuration, leading to a gradual decline in the effectiveness of backlash elimination as the wear of the mechanism and affecting radar tracking accuracy. To overcome this limitation, an anti?backlash strategy of precision radar servo turntable based on deep convolutional neural network (DCNN) is proposed in this paper. By collecting the vibration data of the position closed?loop transmission shaft and utilizing continuous wavelet transform (CWT) to generate time?frequency graphs. After training, a recognition model is obtained. Finally, using this model to identify the degree of wear in the servo turntable transmission mechanism and adjust bias current and inflection point current of the dual motor anti?backlash control. Comparative experiments confirm that the adjusted anti?backlash effect is superior to the traditional method, significantly enhancing the equipment reliability and reducing the maintenance cost of radar servo turntable.
Key words:  deep convolutional neural networks  precision radar servo turntable  dual motor anti⁃backlash  relia⁃bility

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司