• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:惠帅宇,杨 柳,邢世其,徐 伟,田元荣. 脉冲分裂条件下LFM信号的提取与参数估计[J]. 雷达科学与技术, 2025, 23(2): 158-166.[点击复制]
HUI Shuaiyu, YANG Liu, XING Shiqi, XU Wei, TIAN Yuanrong. An Extraction and Parameter Estimation Method of LFM Signals Under Pulse Splitting Conditions[J]. Radar Science and Technology, 2025, 23(2): 158-166.[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 55次   下载 16次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
脉冲分裂条件下LFM信号的提取与参数估计
惠帅宇,杨 柳,邢世其,徐 伟,田元荣
1. 西安电子工程研究所, 陕西西安 710100;2. 国防科技大学电子信息系统复杂电磁环境效应国家重点实验室, 湖南长沙 410073
摘要:
针对多雷达辐射源脉冲交错背景下,线性调频(Linear Frequency Modulation, LFM)信号低信噪比导致的脉冲分裂带来原始信号参数难以估计的问题,本文提出了基于深度神经网络和直方图统计的LFM信号两阶段提取与参数估计方法。首先利用双向长短时记忆网络挖掘原始脉冲流中LFM信号与非LFM信号的调制模式差异并进行分类;其次通过序列调频斜率直方图寻找LFM信号分裂脉冲序列间隐含的原始信号调频斜率信息,提取不同调频斜率的LFM信号脉冲子序列;最后在每个子序列中分别估计原始信号的参数。仿真实验结果表明,相较于传统的序列差值直方图算法和循环神经网络分选方法,本文所提方法能够更准确地提取出LFM脉冲信号,并得到较为精确的参数估计结果。
关键词:  脉冲分裂  信号提取  双向长短时记忆网络  序列调频斜率直方图  参数估计
DOI:DOI:10.3969/j.issn.1672-2337.2025.02.006
分类号:TN957
基金项目:国家自然科学基金(No.62001489)
An Extraction and Parameter Estimation Method of LFM Signals Under Pulse Splitting Conditions
HUI Shuaiyu, YANG Liu, XING Shiqi, XU Wei, TIAN Yuanrong
1. Xi’an Electronic Engineering Research Institute, Xi’an 710100, China;2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, China
Abstract:
Aiming at the problem that the original signal parameters are difficult to estimate due to the pulse splitting caused by the low signal?to?noise ratio of the linear frequency modulation(LFM) signal under the background of multi?radar radiation source pulse interleaving, a two?stage extraction and parameter estimation method for LFM signals based on deep neural networks and histogram statistics is proposed in this paper. Firstly, the bidirectional long short?term memory is utilized to mine the modulation pattern differences between LFM and non?LFM signals within the original pulse stream for classification. Secondly, the sequential frequency modulation slope histogram is used to uncover the original signal frequency modulation slope information between split LFM pulse sequences, extracting LFM signal pulse subsequences of different frequency modulation slopes. Finally, the parameters of the original signal in each subsequence are estimated separately. Simulation experiment results indicate that, compared with the traditional sequence difference histogram algorithm and recurrent neural network sorting method, the proposed method in this study can extract LFM pulse signals more accurately and obtain more precise parameter estimation results.
Key words:  pulse splitting  signal extraction  bidirectional long short⁃term memory  signal frequency modulation slope  parameter estimation

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司