• 首页
  • 期刊简介
  • 编委会
  • 版权声明
  • 投稿指南
  • 期刊订阅
  • 相关下载
    雷达数据
    下载专区
  • 过刊浏览
  • 联系我们
引用本文:[点击复制]
[点击复制]
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 732次   下载 0次  
分享到: 微信 更多
字体:加大+|默认|缩小-
基于聚类思想的弹道外推算法研究
李同亮
中国电子科技集团公司第三十八研究所
摘要:
为了提高炮位侦察校射雷达中炮位侦察定位精度同时提升外推结果一致性,本文引入聚类思想,建立了基于K-均值聚类的弹道外推模型。该模型采用七态无迹卡尔曼滤波算法对量测数据进行多次滤波,然后利用4 阶龙格-库塔积分方法对火炮位置进行外推,最后对多次外推结果进行K-均值聚类处理,采用综合多因子方法计算簇品质,选取最优簇对应的聚类中心作为最终的火炮位置进行输出。实验结果表明,该弹道外推算法显著提升了外推结果的一致性及定位精度。
关键词:  UKF滤波  弹道外推  K-均值聚类  簇品质
DOI:
分类号:TJ012.3
基金项目:
Research on Extrapolation Algorithm Based on Clustering Theory
Abstract:
To improve positioning accuracy and conformance of emplacement reconnaissance radar, this paper introduces clustering theory and establishes a ballistic extrapolation model based on K-means clustering. The model uses seven state UKF for measurement data filtering for many times, and then uses fourth-order Runge-Kutta method for artillery position extrapolation, finally the results of multiple extrapolation k-means clustering are on processing,cluster quality is obtained by using the comprehensive multi-factor method, selecting the optimal cluster corresponding to clustering center of the artillery position output. Experimental results show that the trajectory extrapolation method improves the consistency of extrapolation results and location accuracy significantly.
Key words:  UKF filtering  trajectory extrapolation  K-means clustering  cluster quality

版权所有:《雷达科学与技术》编辑部 备案:XXXXXXX
主办:中国电子科技集团公司第三十八研究所 地址:安徽省合肥市高新区香樟大道199号 邮政编码:230088
电话:0551-65391270 电子邮箱:radarst@163.com
技术支持:北京勤云科技发展有限公司